/*
* Copyright ( C ) 2007 Marco Gerards < marco @ gnu . org >
* Copyright ( C ) 2009 David Conrad
* Copyright ( C ) 2011 Jordi Ortiz
*
* This file is part of FFmpeg .
*
* FFmpeg is free software ; you can redistribute it and / or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation ; either
* version 2.1 of the License , or ( at your option ) any later version .
*
* FFmpeg is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the GNU
* Lesser General Public License for more details .
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg ; if not , write to the Free Software
* Foundation , Inc . , 51 Franklin Street , Fifth Floor , Boston , MA 02110 - 1301 USA
*/
/**
* @ file libavcodec / diracdec . c
* Dirac Decoder
* @ author Marco Gerards < marco @ gnu . org > , David Conrad , Jordi Ortiz < nenjordi @ gmail . com >
*/
# include "avcodec.h"
# include "dsputil.h"
# include "get_bits.h"
# include "bytestream.h"
# include "golomb.h"
# include "dirac_arith.h"
# include "mpeg12data.h"
# include "dwt.h"
# include "dirac.h"
# include "diracdsp.h"
# undef printf
/**
* The spec limits the number of wavelet decompositions to 4 for both
* level 1 ( VC - 2 ) and 128 ( long - gop default ) .
* 5 decompositions is the maximum before > 16 - bit buffers are needed .
* Schroedinger allows this for DD 9 , 7 and 13 , 7 wavelets only , limiting
* the others to 4 decompositions ( or 3 for the fidelity filter ) .
*
* We use this instead of MAX_DECOMPOSITIONS to save some memory .
*/
# define MAX_DWT_LEVELS 5
/**
* The spec limits this to 3 for frame coding , but in practice can be as high as 6
*/
# define MAX_REFERENCE_FRAMES 8
# define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
# define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
# define MAX_QUANT 68 /* max quant for VC-2 */
# define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
/**
* DiracBlock - > ref flags , if set then the block does MC from the given ref
*/
# define DIRAC_REF_MASK_REF1 1
# define DIRAC_REF_MASK_REF2 2
# define DIRAC_REF_MASK_GLOBAL 4
/**
* Value of Picture . reference when Picture is not a reference picture , but
* is held for delayed output .
*/
# define DELAYED_PIC_REF 4
# define ff_emulated_edge_mc ff_emulated_edge_mc_8 /* Fix: change the calls to this function regarding bit depth */
# define CALC_PADDING(size, depth) \
( ( ( size + ( 1 < < depth ) - 1 ) > > depth ) < < depth )
# define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
typedef struct {
AVFrame avframe ;
int interpolated [ 3 ] ; /* 1 if hpel[] is valid */
uint8_t * hpel [ 3 ] [ 4 ] ;
uint8_t * hpel_base [ 3 ] [ 4 ] ;
} DiracFrame ;
typedef struct {
union {
int16_t mv [ 2 ] [ 2 ] ;
int16_t dc [ 3 ] ;
} u ; /* anonymous unions aren't in C99 :( */
uint8_t ref ;
} DiracBlock ;
typedef struct SubBand {
int level ;
int orientation ;
int stride ;
int width ;
int height ;
int quant ;
IDWTELEM * ibuf ;
struct SubBand * parent ;
/* for low delay */
unsigned length ;
const uint8_t * coeff_data ;
} SubBand ;
typedef struct Plane {
int width ;
int height ;
int stride ;
int idwt_width ;
int idwt_height ;
int idwt_stride ;
IDWTELEM * idwt_buf ;
IDWTELEM * idwt_buf_base ;
IDWTELEM * idwt_tmp ;
/* block length */
uint8_t xblen ;
uint8_t yblen ;
/* block separation (block n+1 starts after this many pixels in block n) */
uint8_t xbsep ;
uint8_t ybsep ;
/* amount of overspill on each edge (half of the overlap between blocks) */
uint8_t xoffset ;
uint8_t yoffset ;
SubBand band [ MAX_DWT_LEVELS ] [ 4 ] ;
} Plane ;
typedef struct DiracContext {
AVCodecContext * avctx ;
DSPContext dsp ;
DiracDSPContext diracdsp ;
GetBitContext gb ;
dirac_source_params source ;
int seen_sequence_header ;
int frame_number ; /* number of the next frame to display */
Plane plane [ 3 ] ;
int chroma_x_shift ;
int chroma_y_shift ;
int zero_res ; /* zero residue flag */
int is_arith ; /* whether coeffs use arith or golomb coding */
int low_delay ; /* use the low delay syntax */
int globalmc_flag ; /* use global motion compensation */
int num_refs ; /* number of reference pictures */
/* wavelet decoding */
unsigned wavelet_depth ; /* depth of the IDWT */
unsigned wavelet_idx ;
/**
* schroedinger older than 1.0 .8 doesn ' t store
* quant delta if only one codebook exists in a band
*/
unsigned old_delta_quant ;
unsigned codeblock_mode ;
struct {
unsigned width ;
unsigned height ;
} codeblock [ MAX_DWT_LEVELS + 1 ] ;
struct {
unsigned num_x ; /* number of horizontal slices */
unsigned num_y ; /* number of vertical slices */
AVRational bytes ; /* average bytes per slice */
uint8_t quant [ MAX_DWT_LEVELS ] [ 4 ] ; /* [DIRAC_STD] E.1 */
} lowdelay ;
struct {
int pan_tilt [ 2 ] ; /* pan/tilt vector */
int zrs [ 2 ] [ 2 ] ; /* zoom/rotate/shear matrix */
int perspective [ 2 ] ; /* perspective vector */
unsigned zrs_exp ;
unsigned perspective_exp ;
} globalmc [ 2 ] ;
/* motion compensation */
uint8_t mv_precision ; /* [DIRAC_STD] REFS_WT_PRECISION */
int16_t weight [ 2 ] ; /* [DIRAC_STD] REF1_WT and REF2_WT */
unsigned weight_log2denom ; /* [DIRAC_STD] REFS_WT_PRECISION */
int blwidth ; /* number of blocks (horizontally) */
int blheight ; /* number of blocks (vertically) */
int sbwidth ; /* number of superblocks (horizontally) */
int sbheight ; /* number of superblocks (vertically) */
uint8_t * sbsplit ;
DiracBlock * blmotion ;
uint8_t * edge_emu_buffer [ 4 ] ;
uint8_t * edge_emu_buffer_base ;
uint16_t * mctmp ; /* buffer holding the MC data multipled by OBMC weights */
uint8_t * mcscratch ;
DECLARE_ALIGNED ( 16 , uint8_t , obmc_weight ) [ 3 ] [ MAX_BLOCKSIZE * MAX_BLOCKSIZE ] ;
void ( * put_pixels_tab [ 4 ] ) ( uint8_t * dst , const uint8_t * src [ 5 ] , int stride , int h ) ;
void ( * avg_pixels_tab [ 4 ] ) ( uint8_t * dst , const uint8_t * src [ 5 ] , int stride , int h ) ;
void ( * add_obmc ) ( uint16_t * dst , const uint8_t * src , int stride , const uint8_t * obmc_weight , int yblen ) ;
dirac_weight_func weight_func ;
dirac_biweight_func biweight_func ;
DiracFrame * current_picture ;
DiracFrame * ref_pics [ 2 ] ;
DiracFrame * ref_frames [ MAX_REFERENCE_FRAMES + 1 ] ;
DiracFrame * delay_frames [ MAX_DELAY + 1 ] ;
DiracFrame all_frames [ MAX_FRAMES ] ;
} DiracContext ;
/**
* Dirac Specification - >
* Parse code values . 9.6 .1 Table 9.1
*/
enum dirac_parse_code {
pc_seq_header = 0x00 ,
pc_eos = 0x10 ,
pc_aux_data = 0x20 ,
pc_padding = 0x30 ,
} ;
enum dirac_subband {
subband_ll = 0 ,
subband_hl = 1 ,
subband_lh = 2 ,
subband_hh = 3
} ;
static const uint8_t default_qmat [ ] [ 4 ] [ 4 ] = {
{ { 5 , 3 , 3 , 0 } , { 0 , 4 , 4 , 1 } , { 0 , 5 , 5 , 2 } , { 0 , 6 , 6 , 3 } } ,
{ { 4 , 2 , 2 , 0 } , { 0 , 4 , 4 , 2 } , { 0 , 5 , 5 , 3 } , { 0 , 7 , 7 , 5 } } ,
{ { 5 , 3 , 3 , 0 } , { 0 , 4 , 4 , 1 } , { 0 , 5 , 5 , 2 } , { 0 , 6 , 6 , 3 } } ,
{ { 8 , 4 , 4 , 0 } , { 0 , 4 , 4 , 0 } , { 0 , 4 , 4 , 0 } , { 0 , 4 , 4 , 0 } } ,
{ { 8 , 4 , 4 , 0 } , { 0 , 4 , 4 , 0 } , { 0 , 4 , 4 , 0 } , { 0 , 4 , 4 , 0 } } ,
{ { 0 , 4 , 4 , 8 } , { 0 , 8 , 8 , 12 } , { 0 , 13 , 13 , 17 } , { 0 , 17 , 17 , 21 } } ,
{ { 3 , 1 , 1 , 0 } , { 0 , 4 , 4 , 2 } , { 0 , 6 , 6 , 5 } , { 0 , 9 , 9 , 7 } } ,
} ;
static const int qscale_tab [ MAX_QUANT + 1 ] = {
4 , 5 , 6 , 7 , 8 , 10 , 11 , 13 ,
16 , 19 , 23 , 27 , 32 , 38 , 45 , 54 ,
64 , 76 , 91 , 108 , 128 , 152 , 181 , 215 ,
256 , 304 , 362 , 431 , 512 , 609 , 724 , 861 ,
1024 , 1218 , 1448 , 1722 , 2048 , 2435 , 2896 , 3444 ,
4096 , 4871 , 5793 , 6889 , 8192 , 9742 , 11585 , 13777 ,
16384 , 19484 , 23170 , 27554 , 32768 , 38968 , 46341 , 55109 ,
65536 , 77936
} ;
static const int qoffset_intra_tab [ MAX_QUANT + 1 ] = {
1 , 2 , 3 , 4 , 4 , 5 , 6 , 7 ,
8 , 10 , 12 , 14 , 16 , 19 , 23 , 27 ,
32 , 38 , 46 , 54 , 64 , 76 , 91 , 108 ,
128 , 152 , 181 , 216 , 256 , 305 , 362 , 431 ,
512 , 609 , 724 , 861 , 1024 , 1218 , 1448 , 1722 ,
2048 , 2436 , 2897 , 3445 , 4096 , 4871 , 5793 , 6889 ,
8192 , 9742 , 11585 , 13777 , 16384 , 19484 , 23171 , 27555 ,
32768 , 38968
} ;
static const int qoffset_inter_tab [ MAX_QUANT + 1 ] = {
1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 ,
6 , 7 , 9 , 10 , 12 , 14 , 17 , 20 ,
24 , 29 , 34 , 41 , 48 , 57 , 68 , 81 ,
96 , 114 , 136 , 162 , 192 , 228 , 272 , 323 ,
384 , 457 , 543 , 646 , 768 , 913 , 1086 , 1292 ,
1536 , 1827 , 2172 , 2583 , 3072 , 3653 , 4344 , 5166 ,
6144 , 7307 , 8689 , 10333 , 12288 , 14613 , 17378 , 20666 ,
24576 , 29226
} ;
/* magic number division by 3 from schroedinger */
static inline int divide3 ( int x )
{
return ( ( x + 1 ) * 21845 + 10922 ) > > 16 ;
}
static DiracFrame * remove_frame ( DiracFrame * framelist [ ] , int picnum )
{
DiracFrame * remove_pic = NULL ;
int i , remove_idx = - 1 ;
for ( i = 0 ; framelist [ i ] ; i + + )
if ( framelist [ i ] - > avframe . display_picture_number = = picnum ) {
remove_pic = framelist [ i ] ;
remove_idx = i ;
}
if ( remove_pic )
for ( i = remove_idx ; framelist [ i ] ; i + + )
framelist [ i ] = framelist [ i + 1 ] ;
return remove_pic ;
}
static int add_frame ( DiracFrame * framelist [ ] , int maxframes , DiracFrame * frame )
{
int i ;
for ( i = 0 ; i < maxframes ; i + + )
if ( ! framelist [ i ] ) {
framelist [ i ] = frame ;
return 0 ;
}
return - 1 ;
}
static int alloc_sequence_buffers ( DiracContext * s )
{
int sbwidth = DIVRNDUP ( s - > source . width , 4 ) ;
int sbheight = DIVRNDUP ( s - > source . height , 4 ) ;
int i , w , h , top_padding ;
/* todo: think more about this / use or set Plane here */
for ( i = 0 ; i < 3 ; i + + ) {
int max_xblen = MAX_BLOCKSIZE > > ( i ? s - > chroma_x_shift : 0 ) ;
int max_yblen = MAX_BLOCKSIZE > > ( i ? s - > chroma_y_shift : 0 ) ;
w = s - > source . width > > ( i ? s - > chroma_x_shift : 0 ) ;
h = s - > source . height > > ( i ? s - > chroma_y_shift : 0 ) ;
/* we allocate the max we support here since num decompositions can
* change from frame to frame . Stride is aligned to 16 for SIMD , and
* 1 < < MAX_DWT_LEVELS top padding to avoid if ( y > 0 ) in arith decoding
* MAX_BLOCKSIZE padding for MC : blocks can spill up to half of that
* on each side */
top_padding = FFMAX ( 1 < < MAX_DWT_LEVELS , max_yblen / 2 ) ;
w = FFALIGN ( CALC_PADDING ( w , MAX_DWT_LEVELS ) , 8 ) ; /* FIXME: Should this be 16 for SSE??? */
h = top_padding + CALC_PADDING ( h , MAX_DWT_LEVELS ) + max_yblen / 2 ;
s - > plane [ i ] . idwt_buf_base = av_mallocz ( ( w + max_xblen ) * h * sizeof ( IDWTELEM ) ) ;
s - > plane [ i ] . idwt_tmp = av_malloc ( ( w + 16 ) * sizeof ( IDWTELEM ) ) ;
s - > plane [ i ] . idwt_buf = s - > plane [ i ] . idwt_buf_base + top_padding * w ;
if ( ! s - > plane [ i ] . idwt_buf_base | | ! s - > plane [ i ] . idwt_tmp )
return AVERROR ( ENOMEM ) ;
}
w = s - > source . width ;
h = s - > source . height ;
/* fixme: allocate using real stride here */
s - > sbsplit = av_malloc ( sbwidth * sbheight ) ;
s - > blmotion = av_malloc ( sbwidth * sbheight * 4 * sizeof ( * s - > blmotion ) ) ;
s - > edge_emu_buffer_base = av_malloc ( ( w + 64 ) * MAX_BLOCKSIZE ) ;
s - > mctmp = av_malloc ( ( w + 64 + MAX_BLOCKSIZE ) * ( h * MAX_BLOCKSIZE ) * sizeof ( * s - > mctmp ) ) ;
s - > mcscratch = av_malloc ( ( w + 64 ) * MAX_BLOCKSIZE ) ;
if ( ! s - > sbsplit | | ! s - > blmotion )
return AVERROR ( ENOMEM ) ;
return 0 ;
}
static void free_sequence_buffers ( DiracContext * s )
{
int i , j , k ;
for ( i = 0 ; i < MAX_FRAMES ; i + + ) {
if ( s - > all_frames [ i ] . avframe . data [ 0 ] ) {
s - > avctx - > release_buffer ( s - > avctx , & s - > all_frames [ i ] . avframe ) ;
memset ( s - > all_frames [ i ] . interpolated , 0 , sizeof ( s - > all_frames [ i ] . interpolated ) ) ;
}
for ( j = 0 ; j < 3 ; j + + )
for ( k = 1 ; k < 4 ; k + + )
av_freep ( & s - > all_frames [ i ] . hpel_base [ j ] [ k ] ) ;
}
memset ( s - > ref_frames , 0 , sizeof ( s - > ref_frames ) ) ;
memset ( s - > delay_frames , 0 , sizeof ( s - > delay_frames ) ) ;
for ( i = 0 ; i < 3 ; i + + ) {
av_freep ( & s - > plane [ i ] . idwt_buf_base ) ;
av_freep ( & s - > plane [ i ] . idwt_tmp ) ;
}
av_freep ( & s - > sbsplit ) ;
av_freep ( & s - > blmotion ) ;
av_freep ( & s - > edge_emu_buffer_base ) ;
av_freep ( & s - > mctmp ) ;
av_freep ( & s - > mcscratch ) ;
}
static av_cold int dirac_decode_init ( AVCodecContext * avctx )
{
DiracContext * s = avctx - > priv_data ;
s - > avctx = avctx ;
s - > frame_number = - 1 ;
if ( avctx - > flags & CODEC_FLAG_EMU_EDGE ) {
av_log ( avctx , AV_LOG_ERROR , " Edge emulation not supported! \n " ) ;
return AVERROR_PATCHWELCOME ;
}
dsputil_init ( & s - > dsp , avctx ) ;
ff_diracdsp_init ( & s - > diracdsp ) ;
return 0 ;
}
static void dirac_decode_flush ( AVCodecContext * avctx )
{
DiracContext * s = avctx - > priv_data ;
free_sequence_buffers ( s ) ;
s - > seen_sequence_header = 0 ;
s - > frame_number = - 1 ;
}
static av_cold int dirac_decode_end ( AVCodecContext * avctx )
{
dirac_decode_flush ( avctx ) ;
return 0 ;
}
# define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
static inline void coeff_unpack_arith ( DiracArith * c , int qfactor , int qoffset ,
SubBand * b , IDWTELEM * buf , int x , int y )
{
int coeff , sign ;
int sign_pred = 0 ;
int pred_ctx = CTX_ZPZN_F1 ;
/* Check if the parent subband has a 0 in the corresponding position */
if ( b - > parent )
pred_ctx + = ! ! b - > parent - > ibuf [ b - > parent - > stride * ( y > > 1 ) + ( x > > 1 ) ] < < 1 ;
if ( b - > orientation = = subband_hl )
sign_pred = buf [ - b - > stride ] ;
/* Determine if the pixel has only zeros in its neighbourhood */
if ( x ) {
pred_ctx + = ! ( buf [ - 1 ] | buf [ - b - > stride ] | buf [ - 1 - b - > stride ] ) ;
if ( b - > orientation = = subband_lh )
sign_pred = buf [ - 1 ] ;
} else {
pred_ctx + = ! buf [ - b - > stride ] ;
}
coeff = dirac_get_arith_uint ( c , pred_ctx , CTX_COEFF_DATA ) ;
if ( coeff ) {
coeff = ( coeff * qfactor + qoffset + 2 ) > > 2 ;
sign = dirac_get_arith_bit ( c , SIGN_CTX ( sign_pred ) ) ;
coeff = ( coeff ^ - sign ) + sign ;
}
* buf = coeff ;
}
static inline int coeff_unpack_golomb ( GetBitContext * gb , int qfactor , int qoffset )
{
int sign , coeff ;
coeff = svq3_get_ue_golomb ( gb ) ;
if ( coeff ) {
coeff = ( coeff * qfactor + qoffset + 2 ) > > 2 ;
sign = get_bits1 ( gb ) ;
coeff = ( coeff ^ - sign ) + sign ;
}
return coeff ;
}
/**
* Decode the coeffs in the rectangle defined by left , right , top , bottom
* [ DIRAC_STD ] 13.4 .3 .2 Codeblock unpacking loop . codeblock ( )
*/
static inline void codeblock ( DiracContext * s , SubBand * b ,
GetBitContext * gb , DiracArith * c ,
int left , int right , int top , int bottom ,
int blockcnt_one , int is_arith )
{
int x , y , zero_block ;
int qoffset , qfactor ;
IDWTELEM * buf ;
/* check for any coded coefficients in this codeblock */
if ( ! blockcnt_one ) {
if ( is_arith )
zero_block = dirac_get_arith_bit ( c , CTX_ZERO_BLOCK ) ;
else
zero_block = get_bits1 ( gb ) ;
if ( zero_block )
return ;
}
if ( s - > codeblock_mode & & ! ( s - > old_delta_quant & & blockcnt_one ) ) {
if ( is_arith )
b - > quant + = dirac_get_arith_int ( c , CTX_DELTA_Q_F , CTX_DELTA_Q_DATA ) ;
else
b - > quant + = dirac_get_se_golomb ( gb ) ;
}
b - > quant = FFMIN ( b - > quant , MAX_QUANT ) ;
qfactor = qscale_tab [ b - > quant ] ;
/* TODO: context pointer? */
if ( ! s - > num_refs )
qoffset = qoffset_intra_tab [ b - > quant ] ;
else
qoffset = qoffset_inter_tab [ b - > quant ] ;
buf = b - > ibuf + top * b - > stride ;
for ( y = top ; y < bottom ; y + + ) {
for ( x = left ; x < right ; x + + ) {
/* [DIRAC_STD] 13.4.4 Subband coefficients. coeff_unpack() */
if ( is_arith )
coeff_unpack_arith ( c , qfactor , qoffset , b , buf + x , x , y ) ;
else
buf [ x ] = coeff_unpack_golomb ( gb , qfactor , qoffset ) ;
}
buf + = b - > stride ;
}
}
/**
* Dirac Specification - >
* 13.3 intra_dc_prediction ( band )
*/
static inline void intra_dc_prediction ( SubBand * b )
{
IDWTELEM * buf = b - > ibuf ;
int x , y ;
for ( x = 1 ; x < b - > width ; x + + )
buf [ x ] + = buf [ x - 1 ] ;
buf + = b - > stride ;
for ( y = 1 ; y < b - > height ; y + + ) {
buf [ 0 ] + = buf [ - b - > stride ] ;
for ( x = 1 ; x < b - > width ; x + + ) {
int pred = buf [ x - 1 ] + buf [ x - b - > stride ] + buf [ x - b - > stride - 1 ] ;
buf [ x ] + = divide3 ( pred ) ;
}
buf + = b - > stride ;
}
}
/**
* Dirac Specification - >
* 13.4 .2 Non - skipped subbands . subband_coeffs ( )
*/
static av_always_inline
void decode_subband_internal ( DiracContext * s , SubBand * b , int is_arith )
{
int cb_x , cb_y , left , right , top , bottom ;
DiracArith c ;
GetBitContext gb ;
int cb_width = s - > codeblock [ b - > level + ( b - > orientation ! = subband_ll ) ] . width ;
int cb_height = s - > codeblock [ b - > level + ( b - > orientation ! = subband_ll ) ] . height ;
int blockcnt_one = ( cb_width + cb_height ) = = 2 ;
if ( ! b - > length )
return ;
init_get_bits ( & gb , b - > coeff_data , b - > length * 8 ) ;
if ( is_arith )
ff_dirac_init_arith_decoder ( & c , & gb , b - > length ) ;
top = 0 ;
for ( cb_y = 0 ; cb_y < cb_height ; cb_y + + ) {
bottom = ( b - > height * ( cb_y + 1 ) ) / cb_height ;
left = 0 ;
for ( cb_x = 0 ; cb_x < cb_width ; cb_x + + ) {
right = ( b - > width * ( cb_x + 1 ) ) / cb_width ;
codeblock ( s , b , & gb , & c , left , right , top , bottom , blockcnt_one , is_arith ) ;
left = right ;
}
top = bottom ;
}
if ( b - > orientation = = subband_ll & & s - > num_refs = = 0 )
intra_dc_prediction ( b ) ;
}
static int decode_subband_arith ( AVCodecContext * avctx , void * b )
{
DiracContext * s = avctx - > priv_data ;
decode_subband_internal ( s , b , 1 ) ;
return 0 ;
}
static int decode_subband_golomb ( AVCodecContext * avctx , void * arg )
{
DiracContext * s = avctx - > priv_data ;
SubBand * * b = arg ;
decode_subband_internal ( s , * b , 0 ) ;
return 0 ;
}
/**
* Dirac Specification - >
* [ DIRAC_STD ] 13.4 .1 core_transform_data ( )
*/
static void decode_component ( DiracContext * s , int comp )
{
AVCodecContext * avctx = s - > avctx ;
SubBand * bands [ 3 * MAX_DWT_LEVELS + 1 ] ;
enum dirac_subband orientation ;
int level , num_bands = 0 ;
/* Unpack all subbands at all levels. */
for ( level = 0 ; level < s - > wavelet_depth ; level + + ) {
for ( orientation = ! ! level ; orientation < 4 ; orientation + + ) {
SubBand * b = & s - > plane [ comp ] . band [ level ] [ orientation ] ;
bands [ num_bands + + ] = b ;
align_get_bits ( & s - > gb ) ;
/* [DIRAC_STD] 13.4.2 subband() */
b - > length = svq3_get_ue_golomb ( & s - > gb ) ;
if ( b - > length ) {
b - > quant = svq3_get_ue_golomb ( & s - > gb ) ;
align_get_bits ( & s - > gb ) ;
b - > coeff_data = s - > gb . buffer + get_bits_count ( & s - > gb ) / 8 ;
b - > length = FFMIN ( b - > length , get_bits_left ( & s - > gb ) / 8 ) ;
skip_bits_long ( & s - > gb , b - > length * 8 ) ;
}
}
/* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
if ( s - > is_arith )
avctx - > execute ( avctx , decode_subband_arith , & s - > plane [ comp ] . band [ level ] [ ! ! level ] ,
NULL , 4 - ! ! level , sizeof ( SubBand ) ) ;
}
/* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
if ( ! s - > is_arith )
avctx - > execute ( avctx , decode_subband_golomb , bands , NULL , num_bands , sizeof ( SubBand * ) ) ;
}
/* [DIRAC_STD] 13.5.5.2 Luma slice subband data. luma_slice_band(level,orient,sx,sy) --> if b2 == NULL */
/* [DIRAC_STD] 13.5.5.3 Chroma slice subband data. chroma_slice_band(level,orient,sx,sy) --> if b2 != NULL */
static void lowdelay_subband ( DiracContext * s , GetBitContext * gb , int quant ,
int slice_x , int slice_y , int bits_end ,
SubBand * b1 , SubBand * b2 )
{
int left = b1 - > width * slice_x / s - > lowdelay . num_x ;
int right = b1 - > width * ( slice_x + 1 ) / s - > lowdelay . num_x ;
int top = b1 - > height * slice_y / s - > lowdelay . num_y ;
int bottom = b1 - > height * ( slice_y + 1 ) / s - > lowdelay . num_y ;
int qfactor = qscale_tab [ FFMIN ( quant , MAX_QUANT ) ] ;
int qoffset = qoffset_intra_tab [ FFMIN ( quant , MAX_QUANT ) ] ;
IDWTELEM * buf1 = b1 - > ibuf + top * b1 - > stride ;
IDWTELEM * buf2 = b2 ? b2 - > ibuf + top * b2 - > stride : NULL ;
int x , y ;
/* we have to constantly check for overread since the spec explictly
requires this , with the meaning that all remaining coeffs are set to 0 */
if ( get_bits_count ( gb ) > = bits_end )
return ;
for ( y = top ; y < bottom ; y + + ) {
for ( x = left ; x < right ; x + + ) {
buf1 [ x ] = coeff_unpack_golomb ( gb , qfactor , qoffset ) ;
if ( get_bits_count ( gb ) > = bits_end )
return ;
if ( buf2 ) {
buf2 [ x ] = coeff_unpack_golomb ( gb , qfactor , qoffset ) ;
if ( get_bits_count ( gb ) > = bits_end )
return ;
}
}
buf1 + = b1 - > stride ;
if ( buf2 )
buf2 + = b2 - > stride ;
}
}
struct lowdelay_slice {
GetBitContext gb ;
int slice_x ;
int slice_y ;
int bytes ;
} ;
/**
* Dirac Specification - >
* 13.5 .2 Slices . slice ( sx , sy )
*/
static int decode_lowdelay_slice ( AVCodecContext * avctx , void * arg )
{
DiracContext * s = avctx - > priv_data ;
struct lowdelay_slice * slice = arg ;
GetBitContext * gb = & slice - > gb ;
enum dirac_subband orientation ;
int level , quant , chroma_bits , chroma_end ;
int quant_base = get_bits ( gb , 7 ) ; /*[DIRAC_STD] qindex */
int length_bits = av_log2 ( 8 * slice - > bytes ) + 1 ;
int luma_bits = get_bits_long ( gb , length_bits ) ;
int luma_end = get_bits_count ( gb ) + FFMIN ( luma_bits , get_bits_left ( gb ) ) ;
/* [DIRAC_STD] 13.5.5.2 luma_slice_band */
for ( level = 0 ; level < s - > wavelet_depth ; level + + )
for ( orientation = ! ! level ; orientation < 4 ; orientation + + ) {
quant = FFMAX ( quant_base - s - > lowdelay . quant [ level ] [ orientation ] , 0 ) ;
lowdelay_subband ( s , gb , quant , slice - > slice_x , slice - > slice_y , luma_end ,
& s - > plane [ 0 ] . band [ level ] [ orientation ] , NULL ) ;
}
/* consume any unused bits from luma */
skip_bits_long ( gb , get_bits_count ( gb ) - luma_end ) ;
chroma_bits = 8 * slice - > bytes - 7 - length_bits - luma_bits ;
chroma_end = get_bits_count ( gb ) + FFMIN ( chroma_bits , get_bits_left ( gb ) ) ;
/* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
for ( level = 0 ; level < s - > wavelet_depth ; level + + )
for ( orientation = ! ! level ; orientation < 4 ; orientation + + ) {
quant = FFMAX ( quant_base - s - > lowdelay . quant [ level ] [ orientation ] , 0 ) ;
lowdelay_subband ( s , gb , quant , slice - > slice_x , slice - > slice_y , chroma_end ,
& s - > plane [ 1 ] . band [ level ] [ orientation ] ,
& s - > plane [ 2 ] . band [ level ] [ orientation ] ) ;
}
return 0 ;
}
/**
* Dirac Specification - >
* 13.5 .1 low_delay_transform_data ( )
*/
static void decode_lowdelay ( DiracContext * s )
{
AVCodecContext * avctx = s - > avctx ;
int slice_x , slice_y , bytes , bufsize ;
const uint8_t * buf ;
struct lowdelay_slice * slices ;
int slice_num = 0 ;
slices = av_mallocz ( s - > lowdelay . num_x * s - > lowdelay . num_y * sizeof ( struct lowdelay_slice ) ) ;
align_get_bits ( & s - > gb ) ;
/*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
buf = s - > gb . buffer + get_bits_count ( & s - > gb ) / 8 ;
bufsize = get_bits_left ( & s - > gb ) ;
for ( slice_y = 0 ; slice_y < s - > lowdelay . num_y ; slice_y + + )
for ( slice_x = 0 ; slice_x < s - > lowdelay . num_x ; slice_x + + ) {
bytes = ( slice_num + 1 ) * s - > lowdelay . bytes . num / s - > lowdelay . bytes . den
- slice_num * s - > lowdelay . bytes . num / s - > lowdelay . bytes . den ;
slices [ slice_num ] . bytes = bytes ;
slices [ slice_num ] . slice_x = slice_x ;
slices [ slice_num ] . slice_y = slice_y ;
init_get_bits ( & slices [ slice_num ] . gb , buf , bufsize ) ;
slice_num + + ;
buf + = bytes ;
bufsize - = bytes * 8 ;
if ( bufsize < = 0 )
goto end ;
}
end :
avctx - > execute ( avctx , decode_lowdelay_slice , slices , NULL , slice_num ,
sizeof ( struct lowdelay_slice ) ) ; /* [DIRAC_STD] 13.5.2 Slices */
intra_dc_prediction ( & s - > plane [ 0 ] . band [ 0 ] [ 0 ] ) ; /* [DIRAC_STD] 13.3 intra_dc_prediction() */
intra_dc_prediction ( & s - > plane [ 1 ] . band [ 0 ] [ 0 ] ) ; /* [DIRAC_STD] 13.3 intra_dc_prediction() */
intra_dc_prediction ( & s - > plane [ 2 ] . band [ 0 ] [ 0 ] ) ; /* [DIRAC_STD] 13.3 intra_dc_prediction() */
av_free ( slices ) ;
}
static void init_planes ( DiracContext * s )
{
int i , w , h , level , orientation ;
for ( i = 0 ; i < 3 ; i + + ) {
Plane * p = & s - > plane [ i ] ;
p - > width = s - > source . width > > ( i ? s - > chroma_x_shift : 0 ) ;
p - > height = s - > source . height > > ( i ? s - > chroma_y_shift : 0 ) ;
p - > idwt_width = w = CALC_PADDING ( p - > width , s - > wavelet_depth ) ;
p - > idwt_height = h = CALC_PADDING ( p - > height , s - > wavelet_depth ) ;
p - > idwt_stride = FFALIGN ( p - > idwt_width , 8 ) ;
for ( level = s - > wavelet_depth - 1 ; level > = 0 ; level - - ) {
w = w > > 1 ;
h = h > > 1 ;
for ( orientation = ! ! level ; orientation < 4 ; orientation + + ) {
SubBand * b = & p - > band [ level ] [ orientation ] ;
b - > ibuf = p - > idwt_buf ;
b - > level = level ;
b - > stride = p - > idwt_stride < < ( s - > wavelet_depth - level ) ;
b - > width = w ;
b - > height = h ;
b - > orientation = orientation ;
if ( orientation & 1 )
b - > ibuf + = w ;
if ( orientation > 1 )
b - > ibuf + = b - > stride > > 1 ;
if ( level )
b - > parent = & p - > band [ level - 1 ] [ orientation ] ;
}
}
if ( i > 0 ) {
p - > xblen = s - > plane [ 0 ] . xblen > > s - > chroma_x_shift ;
p - > yblen = s - > plane [ 0 ] . yblen > > s - > chroma_y_shift ;
p - > xbsep = s - > plane [ 0 ] . xbsep > > s - > chroma_x_shift ;
p - > ybsep = s - > plane [ 0 ] . ybsep > > s - > chroma_y_shift ;
}
p - > xoffset = ( p - > xblen - p - > xbsep ) / 2 ;
p - > yoffset = ( p - > yblen - p - > ybsep ) / 2 ;
}
}
/**
* Unpack the motion compensation parameters
* Dirac Specification - >
* 11.2 Picture prediction data . picture_prediction ( )
*/
static int dirac_unpack_prediction_parameters ( DiracContext * s )
{
static const uint8_t default_blen [ ] = { 4 , 12 , 16 , 24 } ;
static const uint8_t default_bsep [ ] = { 4 , 8 , 12 , 16 } ;
GetBitContext * gb = & s - > gb ;
unsigned idx , ref ;
align_get_bits ( gb ) ;
/* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
/* Luma and Chroma are equal. 11.2.3 */
idx = svq3_get_ue_golomb ( gb ) ; /* [DIRAC_STD] index */
if ( idx > 4 )
{
av_log ( s - > avctx , AV_LOG_ERROR , " Block prediction index too high \n " ) ;
return - 1 ;
}
if ( idx = = 0 ) {
s - > plane [ 0 ] . xblen = svq3_get_ue_golomb ( gb ) ;
s - > plane [ 0 ] . yblen = svq3_get_ue_golomb ( gb ) ;
s - > plane [ 0 ] . xbsep = svq3_get_ue_golomb ( gb ) ;
s - > plane [ 0 ] . ybsep = svq3_get_ue_golomb ( gb ) ;
} else {
/*[DIRAC_STD] preset_block_params(index). Table 11.1 */
s - > plane [ 0 ] . xblen = default_blen [ idx - 1 ] ;
s - > plane [ 0 ] . yblen = default_blen [ idx - 1 ] ;
s - > plane [ 0 ] . xbsep = default_bsep [ idx - 1 ] ;
s - > plane [ 0 ] . ybsep = default_bsep [ idx - 1 ] ;
}
/*[DIRAC_STD] 11.2.4 motion_data_dimensions()
Calculated in function dirac_unpack_block_motion_data */
if ( s - > plane [ 0 ] . xbsep < s - > plane [ 0 ] . xblen / 2 | | s - > plane [ 0 ] . ybsep < s - > plane [ 0 ] . yblen / 2 ) {
av_log ( s - > avctx , AV_LOG_ERROR , " Block separation too small \n " ) ;
return - 1 ;
}
if ( s - > plane [ 0 ] . xbsep > s - > plane [ 0 ] . xblen | | s - > plane [ 0 ] . ybsep > s - > plane [ 0 ] . yblen ) {
av_log ( s - > avctx , AV_LOG_ERROR , " Block seperation greater than size \n " ) ;
return - 1 ;
}
if ( FFMAX ( s - > plane [ 0 ] . xblen , s - > plane [ 0 ] . yblen ) > MAX_BLOCKSIZE ) {
av_log ( s - > avctx , AV_LOG_ERROR , " Unsupported large block size \n " ) ;
return - 1 ;
}
/*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
Read motion vector precision */
s - > mv_precision = svq3_get_ue_golomb ( gb ) ;
if ( s - > mv_precision > 3 ) {
av_log ( s - > avctx , AV_LOG_ERROR , " MV precision finer than eighth-pel \n " ) ;
return - 1 ;
}
/*[DIRAC_STD] 11.2.6 Global motion. global_motion()
Read the global motion compensation parameters */
s - > globalmc_flag = get_bits1 ( gb ) ;
if ( s - > globalmc_flag ) {
memset ( s - > globalmc , 0 , sizeof ( s - > globalmc ) ) ;
/* [DIRAC_STD] pan_tilt(gparams) */
for ( ref = 0 ; ref < s - > num_refs ; ref + + ) {
if ( get_bits1 ( gb ) ) {
s - > globalmc [ ref ] . pan_tilt [ 0 ] = dirac_get_se_golomb ( gb ) ;
s - > globalmc [ ref ] . pan_tilt [ 1 ] = dirac_get_se_golomb ( gb ) ;
}
/* [DIRAC_STD] zoom_rotate_shear(gparams)
zoom / rotation / shear parameters */
if ( get_bits1 ( gb ) ) {
s - > globalmc [ ref ] . zrs_exp = svq3_get_ue_golomb ( gb ) ;
s - > globalmc [ ref ] . zrs [ 0 ] [ 0 ] = dirac_get_se_golomb ( gb ) ;
s - > globalmc [ ref ] . zrs [ 0 ] [ 1 ] = dirac_get_se_golomb ( gb ) ;
s - > globalmc [ ref ] . zrs [ 1 ] [ 0 ] = dirac_get_se_golomb ( gb ) ;
s - > globalmc [ ref ] . zrs [ 1 ] [ 1 ] = dirac_get_se_golomb ( gb ) ;
} else {
s - > globalmc [ ref ] . zrs [ 0 ] [ 0 ] = 1 ;
s - > globalmc [ ref ] . zrs [ 1 ] [ 1 ] = 1 ;
}
/* [DIRAC_STD] perspective(gparams) */
if ( get_bits1 ( gb ) ) {
s - > globalmc [ ref ] . perspective_exp = svq3_get_ue_golomb ( gb ) ;
s - > globalmc [ ref ] . perspective [ 0 ] = dirac_get_se_golomb ( gb ) ;
s - > globalmc [ ref ] . perspective [ 1 ] = dirac_get_se_golomb ( gb ) ;
}
}
}
/*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
Picture prediction mode , not currently used . */
if ( svq3_get_ue_golomb ( gb ) ) {
av_log ( s - > avctx , AV_LOG_ERROR , " Unknown picture prediction mode \n " ) ;
return - 1 ;
}
/* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
just data read , weight calculation will be done later on . */
s - > weight_log2denom = 1 ;
s - > weight [ 0 ] = 1 ;
s - > weight [ 1 ] = 1 ;
if ( get_bits1 ( gb ) ) {
s - > weight_log2denom = svq3_get_ue_golomb ( gb ) ;
s - > weight [ 0 ] = dirac_get_se_golomb ( gb ) ;
if ( s - > num_refs = = 2 )
s - > weight [ 1 ] = dirac_get_se_golomb ( gb ) ;
}
return 0 ;
}
/**
* Dirac Specification - >
* 11.3 Wavelet transform data . wavelet_transform ( )
*/
static int dirac_unpack_idwt_params ( DiracContext * s )
{
GetBitContext * gb = & s - > gb ;
int i , level ;
align_get_bits ( gb ) ;
s - > zero_res = s - > num_refs ? get_bits1 ( gb ) : 0 ;
if ( s - > zero_res )
return 0 ;
/*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
s - > wavelet_idx = svq3_get_ue_golomb ( gb ) ;
if ( s - > wavelet_idx > 6 )
return - 1 ;
s - > wavelet_depth = svq3_get_ue_golomb ( gb ) ;
if ( s - > wavelet_depth > MAX_DWT_LEVELS ) {
av_log ( s - > avctx , AV_LOG_ERROR , " too many dwt decompositions \n " ) ;
return - 1 ;
}
if ( ! s - > low_delay ) {
/* Codeblock paramaters (core syntax only) */
if ( get_bits1 ( gb ) ) {
for ( i = 0 ; i < = s - > wavelet_depth ; i + + ) {
s - > codeblock [ i ] . width = svq3_get_ue_golomb ( gb ) ;
s - > codeblock [ i ] . height = svq3_get_ue_golomb ( gb ) ;
}
s - > codeblock_mode = svq3_get_ue_golomb ( gb ) ;
if ( s - > codeblock_mode > 1 ) {
av_log ( s - > avctx , AV_LOG_ERROR , " unknown codeblock mode \n " ) ;
return - 1 ;
}
} else
for ( i = 0 ; i < = s - > wavelet_depth ; i + + )
s - > codeblock [ i ] . width = s - > codeblock [ i ] . height = 1 ;
} else {
/* Slice parameters + quantization matrix*/
/*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
s - > lowdelay . num_x = svq3_get_ue_golomb ( gb ) ;
s - > lowdelay . num_y = svq3_get_ue_golomb ( gb ) ;
s - > lowdelay . bytes . num = svq3_get_ue_golomb ( gb ) ;
s - > lowdelay . bytes . den = svq3_get_ue_golomb ( gb ) ;
/* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
if ( get_bits1 ( gb ) ) {
av_log ( s - > avctx , AV_LOG_DEBUG , " Low Delay: Has Custom Quantization Matrix! \n " ) ;
/* custom quantization matrix */
s - > lowdelay . quant [ 0 ] [ 0 ] = svq3_get_ue_golomb ( gb ) ;
for ( level = 0 ; level < s - > wavelet_depth ; level + + ) {
s - > lowdelay . quant [ level ] [ 1 ] = svq3_get_ue_golomb ( gb ) ;
s - > lowdelay . quant [ level ] [ 2 ] = svq3_get_ue_golomb ( gb ) ;
s - > lowdelay . quant [ level ] [ 3 ] = svq3_get_ue_golomb ( gb ) ;
}
} else {
/* default quantization matrix */
for ( level = 0 ; level < s - > wavelet_depth ; level + + )
for ( i = 0 ; i < 4 ; i + + ) {
s - > lowdelay . quant [ level ] [ i ] = default_qmat [ s - > wavelet_idx ] [ level ] [ i ] ;
/* haar with no shift differs for different depths */
if ( s - > wavelet_idx = = 3 )
s - > lowdelay . quant [ level ] [ i ] + = 4 * ( s - > wavelet_depth - 1 - level ) ;
}
}
}
return 0 ;
}
static inline int pred_sbsplit ( uint8_t * sbsplit , int stride , int x , int y )
{
static const uint8_t avgsplit [ 7 ] = { 0 , 0 , 1 , 1 , 1 , 2 , 2 } ;
if ( ! ( x | y ) )
return 0 ;
else if ( ! y )
return sbsplit [ - 1 ] ;
else if ( ! x )
return sbsplit [ - stride ] ;
return avgsplit [ sbsplit [ - 1 ] + sbsplit [ - stride ] + sbsplit [ - stride - 1 ] ] ;
}
static inline int pred_block_mode ( DiracBlock * block , int stride , int x , int y , int refmask )
{
int pred ;
if ( ! ( x | y ) )
return 0 ;
else if ( ! y )
return block [ - 1 ] . ref & refmask ;
else if ( ! x )
return block [ - stride ] . ref & refmask ;
/* return the majority */
pred = ( block [ - 1 ] . ref & refmask ) + ( block [ - stride ] . ref & refmask ) + ( block [ - stride - 1 ] . ref & refmask ) ;
return ( pred > > 1 ) & refmask ;
}
static inline void pred_block_dc ( DiracBlock * block , int stride , int x , int y )
{
int i , n = 0 ;
memset ( block - > u . dc , 0 , sizeof ( block - > u . dc ) ) ;
if ( x & & ! ( block [ - 1 ] . ref & 3 ) ) {
for ( i = 0 ; i < 3 ; i + + )
block - > u . dc [ i ] + = block [ - 1 ] . u . dc [ i ] ;
n + + ;
}
if ( y & & ! ( block [ - stride ] . ref & 3 ) ) {
for ( i = 0 ; i < 3 ; i + + )
block - > u . dc [ i ] + = block [ - stride ] . u . dc [ i ] ;
n + + ;
}
if ( x & & y & & ! ( block [ - 1 - stride ] . ref & 3 ) ) {
for ( i = 0 ; i < 3 ; i + + )
block - > u . dc [ i ] + = block [ - 1 - stride ] . u . dc [ i ] ;
n + + ;
}
if ( n = = 2 ) {
for ( i = 0 ; i < 3 ; i + + )
block - > u . dc [ i ] = ( block - > u . dc [ i ] + 1 ) > > 1 ;
} else if ( n = = 3 ) {
for ( i = 0 ; i < 3 ; i + + )
block - > u . dc [ i ] = divide3 ( block - > u . dc [ i ] ) ;
}
}
static inline void pred_mv ( DiracBlock * block , int stride , int x , int y , int ref )
{
int16_t * pred [ 3 ] ;
int refmask = ref + 1 ;
int mask = refmask | DIRAC_REF_MASK_GLOBAL ; /* exclude gmc blocks */
int n = 0 ;
if ( x & & ( block [ - 1 ] . ref & mask ) = = refmask )
pred [ n + + ] = block [ - 1 ] . u . mv [ ref ] ;
if ( y & & ( block [ - stride ] . ref & mask ) = = refmask )
pred [ n + + ] = block [ - stride ] . u . mv [ ref ] ;
if ( x & & y & & ( block [ - stride - 1 ] . ref & mask ) = = refmask )
pred [ n + + ] = block [ - stride - 1 ] . u . mv [ ref ] ;
switch ( n ) {
case 0 :
block - > u . mv [ ref ] [ 0 ] = 0 ;
block - > u . mv [ ref ] [ 1 ] = 0 ;
break ;
case 1 :
block - > u . mv [ ref ] [ 0 ] = pred [ 0 ] [ 0 ] ;
block - > u . mv [ ref ] [ 1 ] = pred [ 0 ] [ 1 ] ;
break ;
case 2 :
block - > u . mv [ ref ] [ 0 ] = ( pred [ 0 ] [ 0 ] + pred [ 1 ] [ 0 ] + 1 ) > > 1 ;
block - > u . mv [ ref ] [ 1 ] = ( pred [ 0 ] [ 1 ] + pred [ 1 ] [ 1 ] + 1 ) > > 1 ;
break ;
case 3 :
block - > u . mv [ ref ] [ 0 ] = mid_pred ( pred [ 0 ] [ 0 ] , pred [ 1 ] [ 0 ] , pred [ 2 ] [ 0 ] ) ;
block - > u . mv [ ref ] [ 1 ] = mid_pred ( pred [ 0 ] [ 1 ] , pred [ 1 ] [ 1 ] , pred [ 2 ] [ 1 ] ) ;
break ;
}
}
static void global_mv ( DiracContext * s , DiracBlock * block , int x , int y , int ref )
{
int ez = s - > globalmc [ ref ] . zrs_exp ;
int ep = s - > globalmc [ ref ] . perspective_exp ;
int ( * A ) [ 2 ] = s - > globalmc [ ref ] . zrs ;
int * b = s - > globalmc [ ref ] . pan_tilt ;
int * c = s - > globalmc [ ref ] . perspective ;
int m = ( 1 < < ep ) - ( c [ 0 ] * x + c [ 1 ] * y ) ;
int mx = m * ( ( A [ 0 ] [ 0 ] * x + A [ 0 ] [ 1 ] * y ) + ( 1 < < ez ) * b [ 0 ] ) ;
int my = m * ( ( A [ 1 ] [ 0 ] * x + A [ 1 ] [ 1 ] * y ) + ( 1 < < ez ) * b [ 1 ] ) ;
block - > u . mv [ ref ] [ 0 ] = ( mx + ( 1 < < ( ez + ep ) ) ) > > ( ez + ep ) ;
block - > u . mv [ ref ] [ 1 ] = ( my + ( 1 < < ( ez + ep ) ) ) > > ( ez + ep ) ;
}
static void decode_block_params ( DiracContext * s , DiracArith arith [ 8 ] , DiracBlock * block ,
int stride , int x , int y )
{
int i ;
block - > ref = pred_block_mode ( block , stride , x , y , DIRAC_REF_MASK_REF1 ) ;
block - > ref ^ = dirac_get_arith_bit ( arith , CTX_PMODE_REF1 ) ;
if ( s - > num_refs = = 2 ) {
block - > ref | = pred_block_mode ( block , stride , x , y , DIRAC_REF_MASK_REF2 ) ;
block - > ref ^ = dirac_get_arith_bit ( arith , CTX_PMODE_REF2 ) < < 1 ;
}
if ( ! block - > ref ) {
pred_block_dc ( block , stride , x , y ) ;
for ( i = 0 ; i < 3 ; i + + )
block - > u . dc [ i ] + = dirac_get_arith_int ( arith + 1 + i , CTX_DC_F1 , CTX_DC_DATA ) ;
return ;
}
if ( s - > globalmc_flag ) {
block - > ref | = pred_block_mode ( block , stride , x , y , DIRAC_REF_MASK_GLOBAL ) ;
block - > ref ^ = dirac_get_arith_bit ( arith , CTX_GLOBAL_BLOCK ) < < 2 ;
}
for ( i = 0 ; i < s - > num_refs ; i + + )
if ( block - > ref & ( i + 1 ) ) {
if ( block - > ref & DIRAC_REF_MASK_GLOBAL ) {
global_mv ( s , block , x , y , i ) ;
} else {
pred_mv ( block , stride , x , y , i ) ;
block - > u . mv [ i ] [ 0 ] + = dirac_get_arith_int ( arith + 4 + 2 * i , CTX_MV_F1 , CTX_MV_DATA ) ;
block - > u . mv [ i ] [ 1 ] + = dirac_get_arith_int ( arith + 5 + 2 * i , CTX_MV_F1 , CTX_MV_DATA ) ;
}
}
}
/**
* Copies the current block to the other blocks covered by the current superblock split mode
*/
static void propagate_block_data ( DiracBlock * block , int stride , int size )
{
int x , y ;
DiracBlock * dst = block ;
for ( x = 1 ; x < size ; x + + )
dst [ x ] = * block ;
for ( y = 1 ; y < size ; y + + ) {
dst + = stride ;
for ( x = 0 ; x < size ; x + + )
dst [ x ] = * block ;
}
}
/**
* Dirac Specification - >
* 12. Block motion data syntax
*/
static void dirac_unpack_block_motion_data ( DiracContext * s )
{
GetBitContext * gb = & s - > gb ;
uint8_t * sbsplit = s - > sbsplit ;
int i , x , y , q , p ;
DiracArith arith [ 8 ] ;
align_get_bits ( gb ) ;
/* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
s - > sbwidth = DIVRNDUP ( s - > source . width , 4 * s - > plane [ 0 ] . xbsep ) ;
s - > sbheight = DIVRNDUP ( s - > source . height , 4 * s - > plane [ 0 ] . ybsep ) ;
s - > blwidth = 4 * s - > sbwidth ;
s - > blheight = 4 * s - > sbheight ;
/* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
decode superblock split modes */
ff_dirac_init_arith_decoder ( arith , gb , svq3_get_ue_golomb ( gb ) ) ; /* svq3_get_ue_golomb(gb) is the length */
for ( y = 0 ; y < s - > sbheight ; y + + ) {
for ( x = 0 ; x < s - > sbwidth ; x + + ) {
int split = dirac_get_arith_uint ( arith , CTX_SB_F1 , CTX_SB_DATA ) ;
sbsplit [ x ] = ( split + pred_sbsplit ( sbsplit + x , s - > sbwidth , x , y ) ) % 3 ;
}
sbsplit + = s - > sbwidth ;
}
/* setup arith decoding */
ff_dirac_init_arith_decoder ( arith , gb , svq3_get_ue_golomb ( gb ) ) ;
for ( i = 0 ; i < s - > num_refs ; i + + ) {
ff_dirac_init_arith_decoder ( arith + 4 + 2 * i , gb , svq3_get_ue_golomb ( gb ) ) ;
ff_dirac_init_arith_decoder ( arith + 5 + 2 * i , gb , svq3_get_ue_golomb ( gb ) ) ;
}
for ( i = 0 ; i < 3 ; i + + )
ff_dirac_init_arith_decoder ( arith + 1 + i , gb , svq3_get_ue_golomb ( gb ) ) ;
for ( y = 0 ; y < s - > sbheight ; y + + )
for ( x = 0 ; x < s - > sbwidth ; x + + ) {
int blkcnt = 1 < < s - > sbsplit [ y * s - > sbwidth + x ] ;
int step = 4 > > s - > sbsplit [ y * s - > sbwidth + x ] ;
for ( q = 0 ; q < blkcnt ; q + + )
for ( p = 0 ; p < blkcnt ; p + + ) {
int bx = 4 * x + p * step ;
int by = 4 * y + q * step ;
DiracBlock * block = & s - > blmotion [ by * s - > blwidth + bx ] ;
decode_block_params ( s , arith , block , s - > blwidth , bx , by ) ;
propagate_block_data ( block , s - > blwidth , step ) ;
}
}
}
static int weight ( int i , int blen , int offset )
{
# define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
( 1 + ( 6 * ( i ) + offset - 1 ) / ( 2 * offset - 1 ) )
if ( i < 2 * offset )
return ROLLOFF ( i ) ;
else if ( i > blen - 1 - 2 * offset )
return ROLLOFF ( blen - 1 - i ) ;
return 8 ;
}
static void init_obmc_weight_row ( Plane * p , uint8_t * obmc_weight , int stride ,
int left , int right , int wy )
{
int x ;
for ( x = 0 ; left & & x < p - > xblen > > 1 ; x + + )
obmc_weight [ x ] = wy * 8 ;
for ( ; x < p - > xblen > > right ; x + + )
obmc_weight [ x ] = wy * weight ( x , p - > xblen , p - > xoffset ) ;
for ( ; x < p - > xblen ; x + + )
obmc_weight [ x ] = wy * 8 ;
for ( ; x < stride ; x + + )
obmc_weight [ x ] = 0 ;
}
static void init_obmc_weight ( Plane * p , uint8_t * obmc_weight , int stride ,
int left , int right , int top , int bottom )
{
int y ;
for ( y = 0 ; top & & y < p - > yblen > > 1 ; y + + ) {
init_obmc_weight_row ( p , obmc_weight , stride , left , right , 8 ) ;
obmc_weight + = stride ;
}
for ( ; y < p - > yblen > > bottom ; y + + ) {
int wy = weight ( y , p - > yblen , p - > yoffset ) ;
init_obmc_weight_row ( p , obmc_weight , stride , left , right , wy ) ;
obmc_weight + = stride ;
}
for ( ; y < p - > yblen ; y + + ) {
init_obmc_weight_row ( p , obmc_weight , stride , left , right , 8 ) ;
obmc_weight + = stride ;
}
}
static void init_obmc_weights ( DiracContext * s , Plane * p , int by )
{
int top = ! by ;
int bottom = by = = s - > blheight - 1 ;
/* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
if ( top | | bottom | | by = = 1 ) {
init_obmc_weight ( p , s - > obmc_weight [ 0 ] , MAX_BLOCKSIZE , 1 , 0 , top , bottom ) ;
init_obmc_weight ( p , s - > obmc_weight [ 1 ] , MAX_BLOCKSIZE , 0 , 0 , top , bottom ) ;
init_obmc_weight ( p , s - > obmc_weight [ 2 ] , MAX_BLOCKSIZE , 0 , 1 , top , bottom ) ;
}
}
static const uint8_t epel_weights [ 4 ] [ 4 ] [ 4 ] = {
{ { 16 , 0 , 0 , 0 } ,
{ 12 , 4 , 0 , 0 } ,
{ 8 , 8 , 0 , 0 } ,
{ 4 , 12 , 0 , 0 } } ,
{ { 12 , 0 , 4 , 0 } ,
{ 9 , 3 , 3 , 1 } ,
{ 6 , 6 , 2 , 2 } ,
{ 3 , 9 , 1 , 3 } } ,
{ { 8 , 0 , 8 , 0 } ,
{ 6 , 2 , 6 , 2 } ,
{ 4 , 4 , 4 , 4 } ,
{ 2 , 6 , 2 , 6 } } ,
{ { 4 , 0 , 12 , 0 } ,
{ 3 , 1 , 9 , 3 } ,
{ 2 , 2 , 6 , 6 } ,
{ 1 , 3 , 3 , 9 } }
} ;
/**
* For block x , y , determine which of the hpel planes to do bilinear
* interpolation from and set src [ ] to the location in each hpel plane
* to MC from .
*
* @ return the index of the put_dirac_pixels_tab function to use
* 0 for 1 plane ( fpel , hpel ) , 1 for 2 planes ( qpel ) , 2 for 4 planes ( qpel ) , and 3 for epel
*/
static int mc_subpel ( DiracContext * s , DiracBlock * block , const uint8_t * src [ 5 ] ,
int x , int y , int ref , int plane )
{
Plane * p = & s - > plane [ plane ] ;
uint8_t * * ref_hpel = s - > ref_pics [ ref ] - > hpel [ plane ] ;
int motion_x = block - > u . mv [ ref ] [ 0 ] ;
int motion_y = block - > u . mv [ ref ] [ 1 ] ;
int mx , my , i , epel , nplanes = 0 ;
if ( plane ) {
motion_x > > = s - > chroma_x_shift ;
motion_y > > = s - > chroma_y_shift ;
}
mx = motion_x & ~ ( - 1 < < s - > mv_precision ) ;
my = motion_y & ~ ( - 1 < < s - > mv_precision ) ;
motion_x > > = s - > mv_precision ;
motion_y > > = s - > mv_precision ;
/* normalize subpel coordinates to epel */
/* TODO: template this function? */
mx < < = 3 - s - > mv_precision ;
my < < = 3 - s - > mv_precision ;
x + = motion_x ;
y + = motion_y ;
epel = ( mx | my ) & 1 ;
/* hpel position */
if ( ! ( ( mx | my ) & 3 ) ) {
nplanes = 1 ;
src [ 0 ] = ref_hpel [ ( my > > 1 ) + ( mx > > 2 ) ] + y * p - > stride + x ;
} else {
/* qpel or epel */
nplanes = 4 ;
for ( i = 0 ; i < 4 ; i + + )
src [ i ] = ref_hpel [ i ] + y * p - > stride + x ;
/* if we're interpolating in the right/bottom halves, adjust the planes as needed
we increment x / y because the edge changes for half of the pixels */
if ( mx > 4 ) {
src [ 0 ] + = 1 ;
src [ 2 ] + = 1 ;
x + + ;
}
if ( my > 4 ) {
src [ 0 ] + = p - > stride ;
src [ 1 ] + = p - > stride ;
y + + ;
}
/* hpel planes are:
[ 0 ] : F [ 1 ] : H
[ 2 ] : V [ 3 ] : C */
if ( ! epel ) {
/* check if we really only need 2 planes since either mx or my is
a hpel position . ( epel weights of 0 handle this there ) */
if ( ! ( mx & 3 ) ) {
/* mx == 0: average [0] and [2]
mx = = 4 : average [ 1 ] and [ 3 ] */
src [ ! mx ] = src [ 2 + ! ! mx ] ;
nplanes = 2 ;
} else if ( ! ( my & 3 ) ) {
src [ 0 ] = src [ ( my > > 1 ) ] ;
src [ 1 ] = src [ ( my > > 1 ) + 1 ] ;
nplanes = 2 ;
}
} else {
/* adjust the ordering if needed so the weights work */
if ( mx > 4 ) {
FFSWAP ( const uint8_t * , src [ 0 ] , src [ 1 ] ) ;
FFSWAP ( const uint8_t * , src [ 2 ] , src [ 3 ] ) ;
}
if ( my > 4 ) {
FFSWAP ( const uint8_t * , src [ 0 ] , src [ 2 ] ) ;
FFSWAP ( const uint8_t * , src [ 1 ] , src [ 3 ] ) ;
}
src [ 4 ] = epel_weights [ my & 3 ] [ mx & 3 ] ;
}
}
/* fixme: v/h _edge_pos */
if ( ( unsigned ) x > p - > width + EDGE_WIDTH / 2 - p - > xblen | |
( unsigned ) y > p - > height + EDGE_WIDTH / 2 - p - > yblen ) {
for ( i = 0 ; i < nplanes ; i + + ) {
ff_emulated_edge_mc ( s - > edge_emu_buffer [ i ] , src [ i ] , p - > stride ,
p - > xblen , p - > yblen , x , y ,
p - > width + EDGE_WIDTH / 2 , p - > height + EDGE_WIDTH / 2 ) ;
src [ i ] = s - > edge_emu_buffer [ i ] ;
}
}
return ( nplanes > > 1 ) + epel ;
}
static void add_dc ( uint16_t * dst , int dc , int stride ,
uint8_t * obmc_weight , int xblen , int yblen )
{
int x , y ;
dc + = 128 ;
for ( y = 0 ; y < yblen ; y + + ) {
for ( x = 0 ; x < xblen ; x + = 2 ) {
dst [ x ] + = dc * obmc_weight [ x ] ;
dst [ x + 1 ] + = dc * obmc_weight [ x + 1 ] ;
}
dst + = stride ;
obmc_weight + = MAX_BLOCKSIZE ;
}
}
static void block_mc ( DiracContext * s , DiracBlock * block ,
uint16_t * mctmp , uint8_t * obmc_weight ,
int plane , int dstx , int dsty )
{
Plane * p = & s - > plane [ plane ] ;
const uint8_t * src [ 5 ] ;
int idx ;
switch ( block - > ref & 3 ) {
case 0 : /* DC */
add_dc ( mctmp , block - > u . dc [ plane ] , p - > stride , obmc_weight , p - > xblen , p - > yblen ) ;
return ;
case 1 :
case 2 :
idx = mc_subpel ( s , block , src , dstx , dsty , ( block - > ref & 3 ) - 1 , plane ) ;
s - > put_pixels_tab [ idx ] ( s - > mcscratch , src , p - > stride , p - > yblen ) ;
if ( s - > weight_func )
s - > weight_func ( s - > mcscratch , p - > stride , s - > weight_log2denom ,
s - > weight [ 0 ] + s - > weight [ 1 ] , p - > yblen ) ;
break ;
case 3 :
idx = mc_subpel ( s , block , src , dstx , dsty , 0 , plane ) ;
s - > put_pixels_tab [ idx ] ( s - > mcscratch , src , p - > stride , p - > yblen ) ;
idx = mc_subpel ( s , block , src , dstx , dsty , 1 , plane ) ;
if ( s - > biweight_func ) {
/* fixme: +32 is a quick hack */
s - > put_pixels_tab [ idx ] ( s - > mcscratch + 32 , src , p - > stride , p - > yblen ) ;
s - > biweight_func ( s - > mcscratch , s - > mcscratch + 32 , p - > stride , s - > weight_log2denom ,
s - > weight [ 0 ] , s - > weight [ 1 ] , p - > yblen ) ;
} else
s - > avg_pixels_tab [ idx ] ( s - > mcscratch , src , p - > stride , p - > yblen ) ;
break ;
}
s - > add_obmc ( mctmp , s - > mcscratch , p - > stride , obmc_weight , p - > yblen ) ;
}
static void mc_row ( DiracContext * s , DiracBlock * block , uint16_t * mctmp , int plane , int dsty )
{
Plane * p = & s - > plane [ plane ] ;
int x , dstx = p - > xbsep - p - > xoffset ;
block_mc ( s , block , mctmp , s - > obmc_weight [ 0 ] , plane , - p - > xoffset , dsty ) ;
mctmp + = p - > xbsep ;
for ( x = 1 ; x < s - > blwidth - 1 ; x + + ) {
block_mc ( s , block + x , mctmp , s - > obmc_weight [ 1 ] , plane , dstx , dsty ) ;
dstx + = p - > xbsep ;
mctmp + = p - > xbsep ;
}
block_mc ( s , block + x , mctmp , s - > obmc_weight [ 2 ] , plane , dstx , dsty ) ;
}
static void select_dsp_funcs ( DiracContext * s , int width , int height , int xblen , int yblen )
{
int idx = 0 ;
if ( xblen > 8 )
idx = 1 ;
if ( xblen > 16 )
idx = 2 ;
memcpy ( s - > put_pixels_tab , s - > diracdsp . put_dirac_pixels_tab [ idx ] , sizeof ( s - > put_pixels_tab ) ) ;
memcpy ( s - > avg_pixels_tab , s - > diracdsp . avg_dirac_pixels_tab [ idx ] , sizeof ( s - > avg_pixels_tab ) ) ;
s - > add_obmc = s - > diracdsp . add_dirac_obmc [ idx ] ;
if ( s - > weight_log2denom > 1 | | s - > weight [ 0 ] ! = 1 | | s - > weight [ 1 ] ! = 1 ) {
s - > weight_func = s - > diracdsp . weight_dirac_pixels_tab [ idx ] ;
s - > biweight_func = s - > diracdsp . biweight_dirac_pixels_tab [ idx ] ;
} else {
s - > weight_func = NULL ;
s - > biweight_func = NULL ;
}
}
static void interpolate_refplane ( DiracContext * s , DiracFrame * ref , int plane , int width , int height )
{
/* chroma allocates an edge of 8 when subsampled
which for 4 : 2 : 2 means an h edge of 16 and v edge of 8
just use 8 for everything for the moment */
int i , edge = EDGE_WIDTH / 2 ;
ref - > hpel [ plane ] [ 0 ] = ref - > avframe . data [ plane ] ;
s - > dsp . draw_edges ( ref - > hpel [ plane ] [ 0 ] , ref - > avframe . linesize [ plane ] , width , height , edge , edge , EDGE_TOP | EDGE_BOTTOM ) ; /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
/* no need for hpel if we only have fpel vectors */
if ( ! s - > mv_precision )
return ;
for ( i = 1 ; i < 4 ; i + + ) {
if ( ! ref - > hpel_base [ plane ] [ i ] )
ref - > hpel_base [ plane ] [ i ] = av_malloc ( ( height + 2 * edge ) * ref - > avframe . linesize [ plane ] + 32 ) ;
/* we need to be 16-byte aligned even for chroma */
ref - > hpel [ plane ] [ i ] = ref - > hpel_base [ plane ] [ i ] + edge * ref - > avframe . linesize [ plane ] + 16 ;
}
if ( ! ref - > interpolated [ plane ] ) {
s - > diracdsp . dirac_hpel_filter ( ref - > hpel [ plane ] [ 1 ] , ref - > hpel [ plane ] [ 2 ] ,
ref - > hpel [ plane ] [ 3 ] , ref - > hpel [ plane ] [ 0 ] ,
ref - > avframe . linesize [ plane ] , width , height ) ;
s - > dsp . draw_edges ( ref - > hpel [ plane ] [ 1 ] , ref - > avframe . linesize [ plane ] , width , height , edge , edge , EDGE_TOP | EDGE_BOTTOM ) ;
s - > dsp . draw_edges ( ref - > hpel [ plane ] [ 2 ] , ref - > avframe . linesize [ plane ] , width , height , edge , edge , EDGE_TOP | EDGE_BOTTOM ) ;
s - > dsp . draw_edges ( ref - > hpel [ plane ] [ 3 ] , ref - > avframe . linesize [ plane ] , width , height , edge , edge , EDGE_TOP | EDGE_BOTTOM ) ;
}
ref - > interpolated [ plane ] = 1 ;
}
/**
* Dirac Specification - >
* 13.0 Transform data syntax . transform_data ( )
*/
static int dirac_decode_frame_internal ( DiracContext * s )
{
DWTContext d ;
int y , i , comp , dsty ;
if ( s - > low_delay ) {
/* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
for ( comp = 0 ; comp < 3 ; comp + + ) {
Plane * p = & s - > plane [ comp ] ;
memset ( p - > idwt_buf , 0 , p - > idwt_stride * p - > idwt_height * sizeof ( IDWTELEM ) ) ;
}
if ( ! s - > zero_res )
decode_lowdelay ( s ) ;
}
for ( comp = 0 ; comp < 3 ; comp + + ) {
Plane * p = & s - > plane [ comp ] ;
uint8_t * frame = s - > current_picture - > avframe . data [ comp ] ;
/* FIXME: small resolutions */
for ( i = 0 ; i < 4 ; i + + )
s - > edge_emu_buffer [ i ] = s - > edge_emu_buffer_base + i * FFALIGN ( p - > width , 16 ) ;
if ( ! s - > zero_res & & ! s - > low_delay )
{
memset ( p - > idwt_buf , 0 , p - > idwt_stride * p - > idwt_height * sizeof ( IDWTELEM ) ) ;
decode_component ( s , comp ) ; /* [DIRAC_STD] 13.4.1 core_transform_data() */
}
if ( ff_spatial_idwt_init2 ( & d , p - > idwt_buf , p - > idwt_width , p - > idwt_height , p - > idwt_stride ,
s - > wavelet_idx + 2 , s - > wavelet_depth , p - > idwt_tmp ) )
return - 1 ;
if ( ! s - > num_refs ) { /* intra */
for ( y = 0 ; y < p - > height ; y + = 16 ) {
ff_spatial_idwt_slice2 ( & d , y + 16 ) ; /* decode */
s - > diracdsp . put_signed_rect_clamped ( frame + y * p - > stride , p - > stride ,
p - > idwt_buf + y * p - > idwt_stride , p - > idwt_stride , p - > width , 16 ) ;
}
} else { /* inter */
int rowheight = p - > ybsep * p - > stride ;
select_dsp_funcs ( s , p - > width , p - > height , p - > xblen , p - > yblen ) ;
for ( i = 0 ; i < s - > num_refs ; i + + )
interpolate_refplane ( s , s - > ref_pics [ i ] , comp , p - > width , p - > height ) ;
memset ( s - > mctmp , 0 , 4 * p - > yoffset * p - > stride ) ;
dsty = - p - > yoffset ;
for ( y = 0 ; y < s - > blheight ; y + + ) {
int h = 0 , start = FFMAX ( dsty , 0 ) ;
uint16_t * mctmp = s - > mctmp + y * rowheight ;
DiracBlock * blocks = s - > blmotion + y * s - > blwidth ;
init_obmc_weights ( s , p , y ) ;
if ( y = = s - > blheight - 1 | | start + p - > ybsep > p - > height )
h = p - > height - start ;
else
h = p - > ybsep - ( start - dsty ) ;
if ( h < 0 )
break ;
memset ( mctmp + 2 * p - > yoffset * p - > stride , 0 , 2 * rowheight ) ;
mc_row ( s , blocks , mctmp , comp , dsty ) ;
mctmp + = ( start - dsty ) * p - > stride + p - > xoffset ;
ff_spatial_idwt_slice2 ( & d , start + h ) ; /* decode */
s - > diracdsp . add_rect_clamped ( frame + start * p - > stride , mctmp , p - > stride ,
p - > idwt_buf + start * p - > idwt_stride , p - > idwt_stride , p - > width , h ) ;
dsty + = p - > ybsep ;
}
}
}
return 0 ;
}
/**
* Dirac Specification - >
* 11.1 .1 Picture Header . picture_header ( )
*/
static int dirac_decode_picture_header ( DiracContext * s )
{
int retire , picnum ;
int i , j , refnum , refdist ;
GetBitContext * gb = & s - > gb ;
/* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
picnum = s - > current_picture - > avframe . display_picture_number = get_bits_long ( gb , 32 ) ;
av_log ( s - > avctx , AV_LOG_DEBUG , " PICTURE_NUM: %d \n " , picnum ) ;
/* if this is the first keyframe after a sequence header, start our
reordering from here */
if ( s - > frame_number < 0 )
s - > frame_number = picnum ;
s - > ref_pics [ 0 ] = s - > ref_pics [ 1 ] = NULL ;
for ( i = 0 ; i < s - > num_refs ; i + + ) {
refnum = picnum + dirac_get_se_golomb ( gb ) ;
refdist = INT_MAX ;
/* find the closest reference to the one we want */
/* Jordi: this is needed if the referenced picture hasn't yet arrived */
for ( j = 0 ; j < MAX_REFERENCE_FRAMES & & refdist ; j + + )
if ( s - > ref_frames [ j ]
& & FFABS ( s - > ref_frames [ j ] - > avframe . display_picture_number - refnum ) < refdist ) {
s - > ref_pics [ i ] = s - > ref_frames [ j ] ;
refdist = FFABS ( s - > ref_frames [ j ] - > avframe . display_picture_number - refnum ) ;
}
if ( ! s - > ref_pics [ i ] | | refdist )
av_log ( s - > avctx , AV_LOG_DEBUG , " Reference not found \n " ) ;
/* if there were no references at all, allocate one */
if ( ! s - > ref_pics [ i ] )
for ( j = 0 ; j < MAX_FRAMES ; j + + )
if ( ! s - > all_frames [ j ] . avframe . data [ 0 ] ) {
s - > ref_pics [ i ] = & s - > all_frames [ j ] ;
s - > avctx - > get_buffer ( s - > avctx , & s - > ref_pics [ i ] - > avframe ) ;
}
}
/* retire the reference frames that are not used anymore */
if ( s - > current_picture - > avframe . reference ) {
retire = picnum + dirac_get_se_golomb ( gb ) ;
if ( retire ! = picnum ) {
DiracFrame * retire_pic = remove_frame ( s - > ref_frames , retire ) ;
if ( retire_pic )
retire_pic - > avframe . reference & = DELAYED_PIC_REF ;
else
av_log ( s - > avctx , AV_LOG_DEBUG , " Frame to retire not found \n " ) ;
}
/* if reference array is full, remove the oldest as per the spec */
while ( add_frame ( s - > ref_frames , MAX_REFERENCE_FRAMES , s - > current_picture ) ) {
av_log ( s - > avctx , AV_LOG_ERROR , " Reference frame overflow \n " ) ;
remove_frame ( s - > ref_frames , s - > ref_frames [ 0 ] - > avframe . display_picture_number ) - > avframe . reference & = DELAYED_PIC_REF ;
}
}
if ( s - > num_refs ) {
if ( dirac_unpack_prediction_parameters ( s ) ) /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
return - 1 ;
dirac_unpack_block_motion_data ( s ) ; /* [DIRAC_STD] 12. Block motion data syntax */
}
if ( dirac_unpack_idwt_params ( s ) ) /* [DIRAC_STD] 11.3 Wavelet transform data */
return - 1 ;
init_planes ( s ) ;
return 0 ;
}
static int get_delayed_pic ( DiracContext * s , AVFrame * picture , int * data_size )
{
DiracFrame * out = s - > delay_frames [ 0 ] ;
int i , out_idx = 0 ;
/* find frame with lowest picture number */
for ( i = 1 ; s - > delay_frames [ i ] ; i + + )
if ( s - > delay_frames [ i ] - > avframe . display_picture_number < out - > avframe . display_picture_number ) {
out = s - > delay_frames [ i ] ;
out_idx = i ;
}
for ( i = out_idx ; s - > delay_frames [ i ] ; i + + )
s - > delay_frames [ i ] = s - > delay_frames [ i + 1 ] ;
if ( out ) {
out - > avframe . reference ^ = DELAYED_PIC_REF ;
* data_size = sizeof ( AVFrame ) ;
* ( AVFrame * ) picture = out - > avframe ;
}
return 0 ;
}
/**
* Dirac Specification - >
* 9.6 Parse Info Header Syntax . parse_info ( )
* 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
*/
# define DATA_UNIT_HEADER_SIZE 13
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
inside the function parse_sequence ( ) */
static int dirac_decode_data_unit ( AVCodecContext * avctx , const uint8_t * buf , int size )
{
DiracContext * s = avctx - > priv_data ;
DiracFrame * pic = NULL ;
int i , parse_code = buf [ 4 ] ;
if ( size < DATA_UNIT_HEADER_SIZE )
return - 1 ;
init_get_bits ( & s - > gb , & buf [ 13 ] , 8 * ( size - DATA_UNIT_HEADER_SIZE ) ) ;
if ( parse_code = = pc_seq_header ) {
if ( s - > seen_sequence_header )
return 0 ;
/* [DIRAC_STD] 10. Sequence header */
if ( avpriv_dirac_parse_sequence_header ( avctx , & s - > gb , & s - > source ) )
return - 1 ;
avcodec_get_chroma_sub_sample ( avctx - > pix_fmt , & s - > chroma_x_shift , & s - > chroma_y_shift ) ;
if ( alloc_sequence_buffers ( s ) )
return - 1 ;
s - > seen_sequence_header = 1 ;
} else if ( parse_code = = pc_eos ) { /* [DIRAC_STD] End of Sequence */
free_sequence_buffers ( s ) ;
s - > seen_sequence_header = 0 ;
} else if ( parse_code = = pc_aux_data ) {
if ( buf [ 13 ] = = 1 ) { /* encoder implementation/version */
int ver [ 3 ] ;
/* versions older than 1.0.8 don't store quant delta for
subbands with only one codeblock */
if ( sscanf ( buf + 14 , " Schroedinger %d.%d.%d " , ver , ver + 1 , ver + 2 ) = = 3 )
if ( ver [ 0 ] = = 1 & & ver [ 1 ] = = 0 & & ver [ 2 ] < = 7 )
s - > old_delta_quant = 1 ;
}
} else if ( parse_code & 0x8 ) { /* picture data unit */
if ( ! s - > seen_sequence_header ) {
av_log ( avctx , AV_LOG_DEBUG , " Dropping frame without sequence header \n " ) ;
return - 1 ;
}
/* find an unused frame */
for ( i = 0 ; i < MAX_FRAMES ; i + + )
if ( s - > all_frames [ i ] . avframe . data [ 0 ] = = NULL )
pic = & s - > all_frames [ i ] ;
if ( ! pic ) {
av_log ( avctx , AV_LOG_ERROR , " framelist full \n " ) ;
return - 1 ;
}
avcodec_get_frame_defaults ( & pic - > avframe ) ;
/* [DIRAC_STD] Defined in 9.6.1 ... */
s - > num_refs = parse_code & 0x03 ; /* [DIRAC_STD] num_refs() */
s - > is_arith = ( parse_code & 0x48 ) = = 0x08 ; /* [DIRAC_STD] using_ac() */
s - > low_delay = ( parse_code & 0x88 ) = = 0x88 ; /* [DIRAC_STD] is_low_delay() */
pic - > avframe . reference = ( parse_code & 0x0C ) = = 0x0C ; /* [DIRAC_STD] is_reference() */
pic - > avframe . key_frame = s - > num_refs = = 0 ; /* [DIRAC_STD] is_intra() */
pic - > avframe . pict_type = s - > num_refs + 1 ; /* Definition of AVPictureType in avutil.h */
if ( avctx - > get_buffer ( avctx , & pic - > avframe ) < 0 ) {
av_log ( avctx , AV_LOG_ERROR , " get_buffer() failed \n " ) ;
return - 1 ;
}
s - > current_picture = pic ;
s - > plane [ 0 ] . stride = pic - > avframe . linesize [ 0 ] ;
s - > plane [ 1 ] . stride = pic - > avframe . linesize [ 1 ] ;
s - > plane [ 2 ] . stride = pic - > avframe . linesize [ 2 ] ;
/* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
if ( dirac_decode_picture_header ( s ) )
return - 1 ;
/* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
if ( dirac_decode_frame_internal ( s ) )
return - 1 ;
}
return 0 ;
}
static int dirac_decode_frame ( AVCodecContext * avctx , void * data , int * data_size , AVPacket * pkt )
{
DiracContext * s = avctx - > priv_data ;
DiracFrame * picture = data ;
uint8_t * buf = pkt - > data ;
int buf_size = pkt - > size ;
int i , data_unit_size , buf_idx = 0 ;
/* release unused frames */
for ( i = 0 ; i < MAX_FRAMES ; i + + )
if ( s - > all_frames [ i ] . avframe . data [ 0 ] & & ! s - > all_frames [ i ] . avframe . reference ) {
avctx - > release_buffer ( avctx , & s - > all_frames [ i ] . avframe ) ;
memset ( s - > all_frames [ i ] . interpolated , 0 , sizeof ( s - > all_frames [ i ] . interpolated ) ) ;
}
s - > current_picture = NULL ;
* data_size = 0 ;
/* end of stream, so flush delayed pics */
if ( buf_size = = 0 )
return get_delayed_pic ( s , ( AVFrame * ) data , data_size ) ;
for ( ; ; ) {
/*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
[ DIRAC_STD ] PARSE_INFO_PREFIX = " BBCD " as defined in ISO / IEC 646
BBCD start code search */
for ( ; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size ; buf_idx + + ) {
if ( buf [ buf_idx ] = = ' B ' & & buf [ buf_idx + 1 ] = = ' B ' & &
buf [ buf_idx + 2 ] = = ' C ' & & buf [ buf_idx + 3 ] = = ' D ' )
break ;
}
/* BBCD found or end of data */
if ( buf_idx + DATA_UNIT_HEADER_SIZE > = buf_size )
break ;
data_unit_size = AV_RB32 ( buf + buf_idx + 5 ) ;
if ( buf_idx + data_unit_size > buf_size ) {
av_log ( s - > avctx , AV_LOG_ERROR ,
" Data unit with size %d is larger than input buffer, discarding \n " ,
data_unit_size ) ;
buf_idx + = 4 ;
continue ;
}
/* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
if ( dirac_decode_data_unit ( avctx , buf + buf_idx , data_unit_size ) )
{
av_log ( s - > avctx , AV_LOG_ERROR , " Error in dirac_decode_data_unit \n " ) ;
return - 1 ;
}
buf_idx + = data_unit_size ;
}
if ( ! s - > current_picture )
return 0 ;
if ( s - > current_picture - > avframe . display_picture_number > s - > frame_number ) {
DiracFrame * delayed_frame = remove_frame ( s - > delay_frames , s - > frame_number ) ;
s - > current_picture - > avframe . reference | = DELAYED_PIC_REF ;
if ( add_frame ( s - > delay_frames , MAX_DELAY , s - > current_picture ) ) {
int min_num = s - > delay_frames [ 0 ] - > avframe . display_picture_number ;
/* Too many delayed frames, so we display the frame with the lowest pts */
av_log ( avctx , AV_LOG_ERROR , " Delay frame overflow \n " ) ;
delayed_frame = s - > delay_frames [ 0 ] ;
for ( i = 1 ; s - > delay_frames [ i ] ; i + + )
if ( s - > delay_frames [ i ] - > avframe . display_picture_number < min_num )
min_num = s - > delay_frames [ i ] - > avframe . display_picture_number ;
delayed_frame = remove_frame ( s - > delay_frames , min_num ) ;
add_frame ( s - > delay_frames , MAX_DELAY , s - > current_picture ) ;
}
if ( delayed_frame ) {
delayed_frame - > avframe . reference ^ = DELAYED_PIC_REF ;
* ( AVFrame * ) data = delayed_frame - > avframe ;
* data_size = sizeof ( AVFrame ) ;
}
} else if ( s - > current_picture - > avframe . display_picture_number = = s - > frame_number ) {
/* The right frame at the right time :-) */
* ( AVFrame * ) data = s - > current_picture - > avframe ;
* data_size = sizeof ( AVFrame ) ;
}
if ( * data_size )
s - > frame_number = picture - > avframe . display_picture_number + 1 ;
return buf_idx ;
}
AVCodec ff_dirac_decoder = {
" dirac " ,
AVMEDIA_TYPE_VIDEO ,
CODEC_ID_DIRAC ,
sizeof ( DiracContext ) ,
dirac_decode_init ,
NULL ,
dirac_decode_end ,
dirac_decode_frame ,
CODEC_CAP_DELAY ,
. flush = dirac_decode_flush ,
. long_name = NULL_IF_CONFIG_SMALL ( " BBC Dirac VC-2 " ) ,
} ;