|
|
|
/*
|
|
|
|
* Common mpeg video decoding code
|
|
|
|
* Copyright (c) 2000,2001 Fabrice Bellard
|
|
|
|
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <limits.h>
|
|
|
|
|
|
|
|
#include "config_components.h"
|
|
|
|
|
|
|
|
#include "libavutil/avassert.h"
|
|
|
|
#include "libavutil/emms.h"
|
|
|
|
#include "libavutil/imgutils.h"
|
|
|
|
#include "libavutil/internal.h"
|
|
|
|
#include "libavutil/video_enc_params.h"
|
|
|
|
|
|
|
|
#include "avcodec.h"
|
|
|
|
#include "decode.h"
|
|
|
|
#include "h264chroma.h"
|
|
|
|
#include "internal.h"
|
|
|
|
#include "mpegutils.h"
|
|
|
|
#include "mpegvideo.h"
|
|
|
|
#include "mpegvideodec.h"
|
|
|
|
#include "mpeg4videodec.h"
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
#include "refstruct.h"
|
|
|
|
#include "thread.h"
|
|
|
|
#include "threadprogress.h"
|
|
|
|
#include "wmv2dec.h"
|
|
|
|
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
int ff_mpv_decode_init(MpegEncContext *s, AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
enum ThreadingStatus thread_status;
|
|
|
|
|
|
|
|
ff_mpv_common_defaults(s);
|
|
|
|
|
|
|
|
s->avctx = avctx;
|
|
|
|
s->width = avctx->coded_width;
|
|
|
|
s->height = avctx->coded_height;
|
|
|
|
s->codec_id = avctx->codec->id;
|
|
|
|
s->workaround_bugs = avctx->workaround_bugs;
|
|
|
|
|
|
|
|
/* convert fourcc to upper case */
|
|
|
|
s->codec_tag = ff_toupper4(avctx->codec_tag);
|
|
|
|
|
|
|
|
ff_mpv_idct_init(s);
|
|
|
|
|
|
|
|
// dct_unquantize defaults for H.261 and H.263;
|
|
|
|
// they might change on a per-frame basis for MPEG-4.
|
|
|
|
// Unused by the MPEG-1/2 decoders.
|
|
|
|
s->dct_unquantize_intra = s->dct_unquantize_h263_intra;
|
|
|
|
s->dct_unquantize_inter = s->dct_unquantize_h263_inter;
|
|
|
|
|
|
|
|
ff_h264chroma_init(&s->h264chroma, 8); //for lowres
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
|
|
|
|
if (s->picture_pool) // VC-1 can call this multiple times
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
thread_status = ff_thread_sync_ref(avctx, offsetof(MpegEncContext, picture_pool));
|
|
|
|
if (thread_status != FF_THREAD_IS_COPY) {
|
|
|
|
s->picture_pool = ff_mpv_alloc_pic_pool(thread_status != FF_THREAD_NO_FRAME_THREADING);
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
if (!s->picture_pool)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_mpeg_update_thread_context(AVCodecContext *dst,
|
|
|
|
const AVCodecContext *src)
|
|
|
|
{
|
|
|
|
MpegEncContext *const s1 = src->priv_data;
|
|
|
|
MpegEncContext *const s = dst->priv_data;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (dst == src)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
av_assert0(s != s1);
|
|
|
|
|
|
|
|
// FIXME can parameters change on I-frames?
|
|
|
|
// in that case dst may need a reinit
|
|
|
|
if (!s->context_initialized) {
|
|
|
|
void *private_ctx = s->private_ctx;
|
|
|
|
int err;
|
|
|
|
memcpy(s, s1, sizeof(*s));
|
|
|
|
|
avcodec/mpegvideo_dec: Don't zero context on init failure
Up until now, ff_mpeg_update_thread_context() zeroes
the context to initialize on initialization failure.
This has been added in e1d7d4bd13cdd8856a3611d1ea387ac733a7aebf.
Just as now, ff_mpeg_update_thread_context() simply
copied the src MpegEncContext over the dst MpegEncContext
to initialize it, but clear_context() was only added in
b160fc290cf49b516c5b6ee0730fd9da7fc623b1, so that cleaning up
on init failure was a minefield if performed.
It was not always performed, namely not before the first
allocation needed to be freed. In the fuzzer sample that
led to e1d7d4bd13cdd8856a3611d1ea387ac733a7aebf, the call
to av_image_check_size() failed and before said commit,
the context contained lots of pointers from the src context,
leading to assert violations lateron.
Of course, the proper fix for this is resetting the pointers
(or even better, not copying them in the first place), so
this zeroing is unnecessary since commit
b160fc290cf49b516c5b6ee0730fd9da7fc623b1. It is also harmful,
because it makes initializing something only once during init
more complicated; See the h264chroma handling in the diff
for an example. Therefore it is removed.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
s->context_initialized = 0;
|
|
|
|
s->context_reinit = 0;
|
|
|
|
s->avctx = dst;
|
|
|
|
s->private_ctx = private_ctx;
|
|
|
|
s->bitstream_buffer = NULL;
|
|
|
|
s->bitstream_buffer_size = s->allocated_bitstream_buffer_size = 0;
|
|
|
|
|
|
|
|
if (s1->context_initialized) {
|
avcodec/mpegvideo_dec: Don't zero context on init failure
Up until now, ff_mpeg_update_thread_context() zeroes
the context to initialize on initialization failure.
This has been added in e1d7d4bd13cdd8856a3611d1ea387ac733a7aebf.
Just as now, ff_mpeg_update_thread_context() simply
copied the src MpegEncContext over the dst MpegEncContext
to initialize it, but clear_context() was only added in
b160fc290cf49b516c5b6ee0730fd9da7fc623b1, so that cleaning up
on init failure was a minefield if performed.
It was not always performed, namely not before the first
allocation needed to be freed. In the fuzzer sample that
led to e1d7d4bd13cdd8856a3611d1ea387ac733a7aebf, the call
to av_image_check_size() failed and before said commit,
the context contained lots of pointers from the src context,
leading to assert violations lateron.
Of course, the proper fix for this is resetting the pointers
(or even better, not copying them in the first place), so
this zeroing is unnecessary since commit
b160fc290cf49b516c5b6ee0730fd9da7fc623b1. It is also harmful,
because it makes initializing something only once during init
more complicated; See the h264chroma handling in the diff
for an example. Therefore it is removed.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
if ((err = ff_mpv_common_init(s)) < 0)
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s->height != s1->height || s->width != s1->width || s->context_reinit) {
|
|
|
|
s->height = s1->height;
|
|
|
|
s->width = s1->width;
|
|
|
|
if ((ret = ff_mpv_common_frame_size_change(s)) < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->quarter_sample = s1->quarter_sample;
|
|
|
|
|
|
|
|
s->picture_number = s1->picture_number;
|
|
|
|
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
ff_mpv_replace_picture(&s->cur_pic, &s1->cur_pic);
|
|
|
|
ff_mpv_replace_picture(&s->last_pic, &s1->last_pic);
|
|
|
|
ff_mpv_replace_picture(&s->next_pic, &s1->next_pic);
|
|
|
|
|
avcodec/mpegvideo_dec: Sync linesize and uvlinesize between threads
linesize and uvlinesize are supposed to be the common linesize of all
the Y/UV-planes of all the currently cached pictures.
ff_mpeg_update_thread_context() syncs the pictures, yet it did not sync
linesize and uvlinesize. This mostly works, because ff_alloc_picture()
only accepts new pictures if they coincide with the linesize of the
already provided pictures (if any). Yet there is a catch: Linesize
changes are accepted when the dimensions change (in which case the
cached frames are discarded).
So imagine a scenario where all frame threads use the same dimension A
until a frame with a different dimension B is encountered in the
bitstream, only to be instantly reverted to A in the next picture. If
the user changes the linesize of the frames upon the change to dimension
B and keeps the linesize thereafter (possible if B > A),
ff_alloc_picture() will report an error when frame-threading is in use:
The thread decoding B will perform a frame size change and so will the
next thread in ff_mpeg_update_thread_context() as well as when decoding
its picture. But the next thread will (presuming it is not the same
thread that decoded B, i.e. presuming >= 3 threads) not perform a frame
size change, because the new frame size coincides with its old frame
size, yet the linesize it expects from ff_alloc_picture() is outdated,
so that it errors out.
It is also possible for the user to use the original linesizes for
the frame after the frame that reverted back to A; this will be
accepted, yet the assumption that of all pictures are the same
will be broken, leading to segfaults.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
2 years ago
|
|
|
s->linesize = s1->linesize;
|
|
|
|
s->uvlinesize = s1->uvlinesize;
|
|
|
|
|
|
|
|
// Error/bug resilience
|
|
|
|
s->workaround_bugs = s1->workaround_bugs;
|
|
|
|
s->padding_bug_score = s1->padding_bug_score;
|
|
|
|
|
|
|
|
// MPEG-4 timing info
|
|
|
|
memcpy(&s->last_time_base, &s1->last_time_base,
|
|
|
|
(char *) &s1->pb_field_time + sizeof(s1->pb_field_time) -
|
|
|
|
(char *) &s1->last_time_base);
|
|
|
|
|
|
|
|
// B-frame info
|
|
|
|
s->max_b_frames = s1->max_b_frames;
|
|
|
|
s->low_delay = s1->low_delay;
|
|
|
|
|
|
|
|
// DivX handling (doesn't work)
|
|
|
|
s->divx_packed = s1->divx_packed;
|
|
|
|
|
|
|
|
if (s1->bitstream_buffer) {
|
|
|
|
av_fast_padded_malloc(&s->bitstream_buffer,
|
|
|
|
&s->allocated_bitstream_buffer_size,
|
|
|
|
s1->bitstream_buffer_size);
|
|
|
|
if (!s->bitstream_buffer) {
|
|
|
|
s->bitstream_buffer_size = 0;
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
s->bitstream_buffer_size = s1->bitstream_buffer_size;
|
|
|
|
memcpy(s->bitstream_buffer, s1->bitstream_buffer,
|
|
|
|
s1->bitstream_buffer_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
// MPEG-2/interlacing info
|
|
|
|
memcpy(&s->progressive_sequence, &s1->progressive_sequence,
|
|
|
|
(char *) &s1->rtp_mode - (char *) &s1->progressive_sequence);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_mpv_decode_close(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
MpegEncContext *s = avctx->priv_data;
|
|
|
|
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
ff_refstruct_pool_uninit(&s->picture_pool);
|
|
|
|
ff_mpv_common_end(s);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_mpv_common_frame_size_change(MpegEncContext *s)
|
|
|
|
{
|
|
|
|
int err = 0;
|
|
|
|
|
|
|
|
if (!s->context_initialized)
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
|
|
|
|
ff_mpv_free_context_frame(s);
|
|
|
|
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
ff_mpv_unref_picture(&s->last_pic);
|
|
|
|
ff_mpv_unref_picture(&s->next_pic);
|
|
|
|
ff_mpv_unref_picture(&s->cur_pic);
|
|
|
|
|
|
|
|
if ((s->width || s->height) &&
|
|
|
|
(err = av_image_check_size(s->width, s->height, 0, s->avctx)) < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/* set chroma shifts */
|
|
|
|
err = av_pix_fmt_get_chroma_sub_sample(s->avctx->pix_fmt,
|
|
|
|
&s->chroma_x_shift,
|
|
|
|
&s->chroma_y_shift);
|
|
|
|
if (err < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
if ((err = ff_mpv_init_context_frame(s)))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
memset(s->thread_context, 0, sizeof(s->thread_context));
|
|
|
|
s->thread_context[0] = s;
|
|
|
|
|
|
|
|
if (s->width && s->height) {
|
|
|
|
err = ff_mpv_init_duplicate_contexts(s);
|
|
|
|
if (err < 0)
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
s->context_reinit = 0;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
ff_mpv_free_context_frame(s);
|
|
|
|
s->context_reinit = 1;
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_picture(MpegEncContext *s, MPVWorkPicture *dst, int reference)
|
|
|
|
{
|
|
|
|
AVCodecContext *avctx = s->avctx;
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
MPVPicture *pic = ff_refstruct_pool_get(s->picture_pool);
|
|
|
|
int ret;
|
|
|
|
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
if (!pic)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
dst->ptr = pic;
|
|
|
|
|
|
|
|
pic->reference = reference;
|
|
|
|
|
|
|
|
/* WM Image / Screen codecs allocate internal buffers with different
|
|
|
|
* dimensions / colorspaces; ignore user-defined callbacks for these. */
|
|
|
|
if (avctx->codec_id != AV_CODEC_ID_WMV3IMAGE &&
|
|
|
|
avctx->codec_id != AV_CODEC_ID_VC1IMAGE &&
|
|
|
|
avctx->codec_id != AV_CODEC_ID_MSS2) {
|
|
|
|
ret = ff_thread_get_buffer(avctx, pic->f,
|
|
|
|
reference ? AV_GET_BUFFER_FLAG_REF : 0);
|
|
|
|
} else {
|
|
|
|
pic->f->width = avctx->width;
|
|
|
|
pic->f->height = avctx->height;
|
|
|
|
pic->f->format = avctx->pix_fmt;
|
|
|
|
ret = avcodec_default_get_buffer2(avctx, pic->f, 0);
|
|
|
|
}
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
ret = ff_mpv_pic_check_linesize(avctx, pic->f, &s->linesize, &s->uvlinesize);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
ret = ff_hwaccel_frame_priv_alloc(avctx, &pic->hwaccel_picture_private);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
av_assert1(s->mb_width == s->buffer_pools.alloc_mb_width);
|
|
|
|
av_assert1(s->mb_height == s->buffer_pools.alloc_mb_height ||
|
|
|
|
FFALIGN(s->mb_height, 2) == s->buffer_pools.alloc_mb_height);
|
|
|
|
av_assert1(s->mb_stride == s->buffer_pools.alloc_mb_stride);
|
|
|
|
ret = ff_mpv_alloc_pic_accessories(s->avctx, dst, &s->sc,
|
|
|
|
&s->buffer_pools, s->mb_height);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
ff_mpv_unref_picture(dst);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int av_cold alloc_dummy_frame(MpegEncContext *s, MPVWorkPicture *dst)
|
|
|
|
{
|
|
|
|
MPVPicture *pic;
|
|
|
|
int ret = alloc_picture(s, dst, 1);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
pic = dst->ptr;
|
|
|
|
pic->dummy = 1;
|
|
|
|
|
|
|
|
ff_thread_progress_report(&pic->progress, INT_MAX);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void color_frame(AVFrame *frame, int luma)
|
|
|
|
{
|
|
|
|
int h_chroma_shift, v_chroma_shift;
|
|
|
|
|
|
|
|
for (int i = 0; i < frame->height; i++)
|
|
|
|
memset(frame->data[0] + frame->linesize[0] * i, luma, frame->width);
|
|
|
|
|
|
|
|
if (!frame->data[1])
|
|
|
|
return;
|
|
|
|
av_pix_fmt_get_chroma_sub_sample(frame->format, &h_chroma_shift, &v_chroma_shift);
|
|
|
|
for (int i = 0; i < AV_CEIL_RSHIFT(frame->height, v_chroma_shift); i++) {
|
|
|
|
memset(frame->data[1] + frame->linesize[1] * i,
|
|
|
|
0x80, AV_CEIL_RSHIFT(frame->width, h_chroma_shift));
|
|
|
|
memset(frame->data[2] + frame->linesize[2] * i,
|
|
|
|
0x80, AV_CEIL_RSHIFT(frame->width, h_chroma_shift));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_mpv_alloc_dummy_frames(MpegEncContext *s)
|
|
|
|
{
|
|
|
|
AVCodecContext *avctx = s->avctx;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
av_assert1(!s->last_pic.ptr || s->last_pic.ptr->f->buf[0]);
|
|
|
|
av_assert1(!s->next_pic.ptr || s->next_pic.ptr->f->buf[0]);
|
|
|
|
if (!s->last_pic.ptr && s->pict_type != AV_PICTURE_TYPE_I) {
|
|
|
|
if (s->pict_type == AV_PICTURE_TYPE_B && s->next_pic.ptr)
|
|
|
|
av_log(avctx, AV_LOG_DEBUG,
|
|
|
|
"allocating dummy last picture for B frame\n");
|
|
|
|
else if (s->codec_id != AV_CODEC_ID_H261 /* H.261 has no keyframes */ &&
|
|
|
|
(s->picture_structure == PICT_FRAME || s->first_field))
|
|
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
|
|
"warning: first frame is no keyframe\n");
|
|
|
|
|
|
|
|
/* Allocate a dummy frame */
|
|
|
|
ret = alloc_dummy_frame(s, &s->last_pic);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (!avctx->hwaccel) {
|
|
|
|
int luma_val = s->codec_id == AV_CODEC_ID_FLV1 || s->codec_id == AV_CODEC_ID_H263 ? 16 : 0x80;
|
|
|
|
color_frame(s->last_pic.ptr->f, luma_val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!s->next_pic.ptr && s->pict_type == AV_PICTURE_TYPE_B) {
|
|
|
|
/* Allocate a dummy frame */
|
|
|
|
ret = alloc_dummy_frame(s, &s->next_pic);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
av_assert0(s->pict_type == AV_PICTURE_TYPE_I || (s->last_pic.ptr &&
|
|
|
|
s->last_pic.ptr->f->buf[0]));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* generic function called after decoding
|
|
|
|
* the header and before a frame is decoded.
|
|
|
|
*/
|
|
|
|
int ff_mpv_frame_start(MpegEncContext *s, AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
s->mb_skipped = 0;
|
|
|
|
|
|
|
|
if (!ff_thread_can_start_frame(avctx)) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
|
|
|
|
return AVERROR_BUG;
|
|
|
|
}
|
|
|
|
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
ff_mpv_unref_picture(&s->cur_pic);
|
|
|
|
ret = alloc_picture(s, &s->cur_pic,
|
|
|
|
s->pict_type != AV_PICTURE_TYPE_B && !s->droppable);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
s->cur_pic.ptr->f->flags |= AV_FRAME_FLAG_TOP_FIELD_FIRST * !!s->top_field_first;
|
|
|
|
s->cur_pic.ptr->f->flags |= AV_FRAME_FLAG_INTERLACED *
|
|
|
|
(!s->progressive_frame && !s->progressive_sequence);
|
|
|
|
s->cur_pic.ptr->field_picture = s->picture_structure != PICT_FRAME;
|
|
|
|
|
|
|
|
s->cur_pic.ptr->f->pict_type = s->pict_type;
|
|
|
|
if (s->pict_type == AV_PICTURE_TYPE_I)
|
|
|
|
s->cur_pic.ptr->f->flags |= AV_FRAME_FLAG_KEY;
|
|
|
|
else
|
|
|
|
s->cur_pic.ptr->f->flags &= ~AV_FRAME_FLAG_KEY;
|
|
|
|
|
|
|
|
if (s->pict_type != AV_PICTURE_TYPE_B) {
|
|
|
|
ff_mpv_workpic_from_pic(&s->last_pic, s->next_pic.ptr);
|
|
|
|
if (!s->droppable)
|
|
|
|
ff_mpv_workpic_from_pic(&s->next_pic, s->cur_pic.ptr);
|
|
|
|
}
|
|
|
|
ff_dlog(s->avctx, "L%p N%p C%p L%p N%p C%p type:%d drop:%d\n",
|
|
|
|
(void*)s->last_pic.ptr, (void*)s->next_pic.ptr, (void*)s->cur_pic.ptr,
|
|
|
|
s->last_pic.ptr ? s->last_pic.ptr->f->data[0] : NULL,
|
|
|
|
s->next_pic.ptr ? s->next_pic.ptr->f->data[0] : NULL,
|
|
|
|
s->cur_pic.ptr ? s->cur_pic.ptr->f->data[0] : NULL,
|
|
|
|
s->pict_type, s->droppable);
|
|
|
|
|
|
|
|
ret = ff_mpv_alloc_dummy_frames(s);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (s->avctx->debug & FF_DEBUG_NOMC)
|
|
|
|
color_frame(s->cur_pic.ptr->f, 0x80);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* called after a frame has been decoded. */
|
|
|
|
void ff_mpv_frame_end(MpegEncContext *s)
|
|
|
|
{
|
|
|
|
emms_c();
|
|
|
|
|
|
|
|
if (s->cur_pic.reference)
|
|
|
|
ff_thread_progress_report(&s->cur_pic.ptr->progress, INT_MAX);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_print_debug_info(const MpegEncContext *s, const MPVPicture *p, AVFrame *pict)
|
|
|
|
{
|
|
|
|
ff_print_debug_info2(s->avctx, pict, p->mb_type,
|
|
|
|
p->qscale_table, p->motion_val,
|
|
|
|
s->mb_width, s->mb_height, s->mb_stride, s->quarter_sample);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_mpv_export_qp_table(const MpegEncContext *s, AVFrame *f,
|
|
|
|
const MPVPicture *p, int qp_type)
|
|
|
|
{
|
|
|
|
AVVideoEncParams *par;
|
|
|
|
int mult = (qp_type == FF_MPV_QSCALE_TYPE_MPEG1) ? 2 : 1;
|
|
|
|
unsigned int nb_mb = p->mb_height * p->mb_width;
|
|
|
|
|
|
|
|
if (!(s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_VIDEO_ENC_PARAMS))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
par = av_video_enc_params_create_side_data(f, AV_VIDEO_ENC_PARAMS_MPEG2, nb_mb);
|
|
|
|
if (!par)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
for (unsigned y = 0; y < p->mb_height; y++)
|
|
|
|
for (unsigned x = 0; x < p->mb_width; x++) {
|
|
|
|
const unsigned int block_idx = y * p->mb_width + x;
|
|
|
|
const unsigned int mb_xy = y * p->mb_stride + x;
|
|
|
|
AVVideoBlockParams *const b = av_video_enc_params_block(par, block_idx);
|
|
|
|
|
|
|
|
b->src_x = x * 16;
|
|
|
|
b->src_y = y * 16;
|
|
|
|
b->w = 16;
|
|
|
|
b->h = 16;
|
|
|
|
|
|
|
|
b->delta_qp = p->qscale_table[mb_xy] * mult;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_mpeg_draw_horiz_band(MpegEncContext *s, int y, int h)
|
|
|
|
{
|
|
|
|
ff_draw_horiz_band(s->avctx, s->cur_pic.ptr->f,
|
|
|
|
s->last_pic.ptr ? s->last_pic.ptr->f : NULL,
|
|
|
|
y, h, s->picture_structure,
|
|
|
|
s->first_field, s->low_delay);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_mpeg_flush(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
MpegEncContext *const s = avctx->priv_data;
|
|
|
|
|
|
|
|
ff_mpv_unref_picture(&s->cur_pic);
|
|
|
|
ff_mpv_unref_picture(&s->last_pic);
|
|
|
|
ff_mpv_unref_picture(&s->next_pic);
|
|
|
|
|
|
|
|
s->mb_x = s->mb_y = 0;
|
|
|
|
|
|
|
|
s->bitstream_buffer_size = 0;
|
|
|
|
s->pp_time = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_mpv_report_decode_progress(MpegEncContext *s)
|
|
|
|
{
|
|
|
|
if (s->pict_type != AV_PICTURE_TYPE_B && !s->partitioned_frame && !s->er.error_occurred)
|
|
|
|
ff_thread_progress_report(&s->cur_pic.ptr->progress, s->mb_y);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline int hpel_motion_lowres(MpegEncContext *s,
|
|
|
|
uint8_t *dest, const uint8_t *src,
|
|
|
|
int field_based, int field_select,
|
|
|
|
int src_x, int src_y,
|
|
|
|
int width, int height, ptrdiff_t stride,
|
|
|
|
int h_edge_pos, int v_edge_pos,
|
|
|
|
int w, int h, const h264_chroma_mc_func *pix_op,
|
|
|
|
int motion_x, int motion_y)
|
|
|
|
{
|
|
|
|
const int lowres = s->avctx->lowres;
|
|
|
|
const int op_index = lowres;
|
|
|
|
const int s_mask = (2 << lowres) - 1;
|
|
|
|
int emu = 0;
|
|
|
|
int sx, sy;
|
|
|
|
|
|
|
|
av_assert2(op_index <= 3);
|
|
|
|
|
|
|
|
if (s->quarter_sample) {
|
|
|
|
motion_x /= 2;
|
|
|
|
motion_y /= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
sx = motion_x & s_mask;
|
|
|
|
sy = motion_y & s_mask;
|
|
|
|
src_x += motion_x >> lowres + 1;
|
|
|
|
src_y += motion_y >> lowres + 1;
|
|
|
|
|
|
|
|
src += src_y * stride + src_x;
|
|
|
|
|
|
|
|
if ((unsigned)src_x > FFMAX( h_edge_pos - (!!sx) - w, 0) ||
|
|
|
|
(unsigned)src_y > FFMAX((v_edge_pos >> field_based) - (!!sy) - h, 0)) {
|
|
|
|
s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, src,
|
|
|
|
s->linesize, s->linesize,
|
|
|
|
w + 1, (h + 1) << field_based,
|
|
|
|
src_x, src_y * (1 << field_based),
|
|
|
|
h_edge_pos, v_edge_pos);
|
|
|
|
src = s->sc.edge_emu_buffer;
|
|
|
|
emu = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
sx = (sx << 2) >> lowres;
|
|
|
|
sy = (sy << 2) >> lowres;
|
|
|
|
if (field_select)
|
|
|
|
src += s->linesize;
|
|
|
|
pix_op[op_index](dest, src, stride, h, sx, sy);
|
|
|
|
return emu;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* apply one mpeg motion vector to the three components */
|
|
|
|
static av_always_inline void mpeg_motion_lowres(MpegEncContext *s,
|
|
|
|
uint8_t *dest_y,
|
|
|
|
uint8_t *dest_cb,
|
|
|
|
uint8_t *dest_cr,
|
|
|
|
int field_based,
|
|
|
|
int bottom_field,
|
|
|
|
int field_select,
|
|
|
|
uint8_t *const *ref_picture,
|
|
|
|
const h264_chroma_mc_func *pix_op,
|
|
|
|
int motion_x, int motion_y,
|
|
|
|
int h, int mb_y)
|
|
|
|
{
|
|
|
|
const uint8_t *ptr_y, *ptr_cb, *ptr_cr;
|
|
|
|
int mx, my, src_x, src_y, uvsrc_x, uvsrc_y, sx, sy, uvsx, uvsy;
|
|
|
|
ptrdiff_t uvlinesize, linesize;
|
|
|
|
const int lowres = s->avctx->lowres;
|
|
|
|
const int op_index = lowres - 1 + s->chroma_x_shift;
|
|
|
|
const int block_s = 8 >> lowres;
|
|
|
|
const int s_mask = (2 << lowres) - 1;
|
|
|
|
const int h_edge_pos = s->h_edge_pos >> lowres;
|
|
|
|
const int v_edge_pos = s->v_edge_pos >> lowres;
|
|
|
|
int hc = s->chroma_y_shift ? (h+1-bottom_field)>>1 : h;
|
|
|
|
|
|
|
|
av_assert2(op_index <= 3);
|
|
|
|
|
|
|
|
linesize = s->cur_pic.linesize[0] << field_based;
|
|
|
|
uvlinesize = s->cur_pic.linesize[1] << field_based;
|
|
|
|
|
|
|
|
// FIXME obviously not perfect but qpel will not work in lowres anyway
|
|
|
|
if (s->quarter_sample) {
|
|
|
|
motion_x /= 2;
|
|
|
|
motion_y /= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (field_based) {
|
|
|
|
motion_y += (bottom_field - field_select)*((1 << lowres)-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
sx = motion_x & s_mask;
|
|
|
|
sy = motion_y & s_mask;
|
|
|
|
src_x = s->mb_x * 2 * block_s + (motion_x >> lowres + 1);
|
|
|
|
src_y = (mb_y * 2 * block_s >> field_based) + (motion_y >> lowres + 1);
|
|
|
|
|
|
|
|
if (s->out_format == FMT_H263) {
|
|
|
|
uvsx = ((motion_x >> 1) & s_mask) | (sx & 1);
|
|
|
|
uvsy = ((motion_y >> 1) & s_mask) | (sy & 1);
|
|
|
|
uvsrc_x = src_x >> 1;
|
|
|
|
uvsrc_y = src_y >> 1;
|
|
|
|
} else if (s->out_format == FMT_H261) {
|
|
|
|
// even chroma mv's are full pel in H261
|
|
|
|
mx = motion_x / 4;
|
|
|
|
my = motion_y / 4;
|
|
|
|
uvsx = (2 * mx) & s_mask;
|
|
|
|
uvsy = (2 * my) & s_mask;
|
|
|
|
uvsrc_x = s->mb_x * block_s + (mx >> lowres);
|
|
|
|
uvsrc_y = mb_y * block_s + (my >> lowres);
|
|
|
|
} else {
|
|
|
|
if (s->chroma_y_shift) {
|
|
|
|
mx = motion_x / 2;
|
|
|
|
my = motion_y / 2;
|
|
|
|
uvsx = mx & s_mask;
|
|
|
|
uvsy = my & s_mask;
|
|
|
|
uvsrc_x = s->mb_x * block_s + (mx >> lowres + 1);
|
|
|
|
uvsrc_y = (mb_y * block_s >> field_based) + (my >> lowres + 1);
|
|
|
|
} else {
|
|
|
|
if (s->chroma_x_shift) {
|
|
|
|
//Chroma422
|
|
|
|
mx = motion_x / 2;
|
|
|
|
uvsx = mx & s_mask;
|
|
|
|
uvsy = motion_y & s_mask;
|
|
|
|
uvsrc_y = src_y;
|
|
|
|
uvsrc_x = s->mb_x*block_s + (mx >> (lowres+1));
|
|
|
|
} else {
|
|
|
|
//Chroma444
|
|
|
|
uvsx = motion_x & s_mask;
|
|
|
|
uvsy = motion_y & s_mask;
|
|
|
|
uvsrc_x = src_x;
|
|
|
|
uvsrc_y = src_y;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ptr_y = ref_picture[0] + src_y * linesize + src_x;
|
|
|
|
ptr_cb = ref_picture[1] + uvsrc_y * uvlinesize + uvsrc_x;
|
|
|
|
ptr_cr = ref_picture[2] + uvsrc_y * uvlinesize + uvsrc_x;
|
|
|
|
|
|
|
|
if ((unsigned) src_x > FFMAX( h_edge_pos - (!!sx) - 2 * block_s, 0) || uvsrc_y<0 ||
|
|
|
|
(unsigned) src_y > FFMAX((v_edge_pos >> field_based) - (!!sy) - FFMAX(h, hc<<s->chroma_y_shift), 0)) {
|
|
|
|
s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, ptr_y,
|
|
|
|
linesize >> field_based, linesize >> field_based,
|
|
|
|
17, 17 + field_based,
|
|
|
|
src_x, src_y * (1 << field_based), h_edge_pos,
|
|
|
|
v_edge_pos);
|
|
|
|
ptr_y = s->sc.edge_emu_buffer;
|
|
|
|
if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
|
|
|
|
uint8_t *ubuf = s->sc.edge_emu_buffer + 18 * s->linesize;
|
|
|
|
uint8_t *vbuf =ubuf + 10 * s->uvlinesize;
|
|
|
|
if (s->workaround_bugs & FF_BUG_IEDGE)
|
|
|
|
vbuf -= s->uvlinesize;
|
|
|
|
s->vdsp.emulated_edge_mc(ubuf, ptr_cb,
|
|
|
|
uvlinesize >> field_based, uvlinesize >> field_based,
|
|
|
|
9, 9 + field_based,
|
|
|
|
uvsrc_x, uvsrc_y * (1 << field_based),
|
|
|
|
h_edge_pos >> 1, v_edge_pos >> 1);
|
|
|
|
s->vdsp.emulated_edge_mc(vbuf, ptr_cr,
|
|
|
|
uvlinesize >> field_based,uvlinesize >> field_based,
|
|
|
|
9, 9 + field_based,
|
|
|
|
uvsrc_x, uvsrc_y * (1 << field_based),
|
|
|
|
h_edge_pos >> 1, v_edge_pos >> 1);
|
|
|
|
ptr_cb = ubuf;
|
|
|
|
ptr_cr = vbuf;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME use this for field pix too instead of the obnoxious hack which changes picture.f->data
|
|
|
|
if (bottom_field) {
|
|
|
|
dest_y += s->linesize;
|
|
|
|
dest_cb += s->uvlinesize;
|
|
|
|
dest_cr += s->uvlinesize;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (field_select) {
|
|
|
|
ptr_y += s->linesize;
|
|
|
|
ptr_cb += s->uvlinesize;
|
|
|
|
ptr_cr += s->uvlinesize;
|
|
|
|
}
|
|
|
|
|
|
|
|
sx = (sx << 2) >> lowres;
|
|
|
|
sy = (sy << 2) >> lowres;
|
|
|
|
pix_op[lowres - 1](dest_y, ptr_y, linesize, h, sx, sy);
|
|
|
|
|
|
|
|
if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
|
|
|
|
uvsx = (uvsx << 2) >> lowres;
|
|
|
|
uvsy = (uvsy << 2) >> lowres;
|
|
|
|
if (hc) {
|
|
|
|
pix_op[op_index](dest_cb, ptr_cb, uvlinesize, hc, uvsx, uvsy);
|
|
|
|
pix_op[op_index](dest_cr, ptr_cr, uvlinesize, hc, uvsx, uvsy);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// FIXME h261 lowres loop filter
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void chroma_4mv_motion_lowres(MpegEncContext *s,
|
|
|
|
uint8_t *dest_cb, uint8_t *dest_cr,
|
|
|
|
uint8_t *const *ref_picture,
|
|
|
|
const h264_chroma_mc_func * pix_op,
|
|
|
|
int mx, int my)
|
|
|
|
{
|
|
|
|
const int lowres = s->avctx->lowres;
|
|
|
|
const int op_index = lowres;
|
|
|
|
const int block_s = 8 >> lowres;
|
|
|
|
const int s_mask = (2 << lowres) - 1;
|
|
|
|
const int h_edge_pos = s->h_edge_pos >> lowres + 1;
|
|
|
|
const int v_edge_pos = s->v_edge_pos >> lowres + 1;
|
|
|
|
int emu = 0, src_x, src_y, sx, sy;
|
|
|
|
ptrdiff_t offset;
|
|
|
|
const uint8_t *ptr;
|
|
|
|
|
|
|
|
av_assert2(op_index <= 3);
|
|
|
|
|
|
|
|
if (s->quarter_sample) {
|
|
|
|
mx /= 2;
|
|
|
|
my /= 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* In case of 8X8, we construct a single chroma motion vector
|
|
|
|
with a special rounding */
|
|
|
|
mx = ff_h263_round_chroma(mx);
|
|
|
|
my = ff_h263_round_chroma(my);
|
|
|
|
|
|
|
|
sx = mx & s_mask;
|
|
|
|
sy = my & s_mask;
|
|
|
|
src_x = s->mb_x * block_s + (mx >> lowres + 1);
|
|
|
|
src_y = s->mb_y * block_s + (my >> lowres + 1);
|
|
|
|
|
|
|
|
offset = src_y * s->uvlinesize + src_x;
|
|
|
|
ptr = ref_picture[1] + offset;
|
|
|
|
if ((unsigned) src_x > FFMAX(h_edge_pos - (!!sx) - block_s, 0) ||
|
|
|
|
(unsigned) src_y > FFMAX(v_edge_pos - (!!sy) - block_s, 0)) {
|
|
|
|
s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, ptr,
|
|
|
|
s->uvlinesize, s->uvlinesize,
|
|
|
|
9, 9,
|
|
|
|
src_x, src_y, h_edge_pos, v_edge_pos);
|
|
|
|
ptr = s->sc.edge_emu_buffer;
|
|
|
|
emu = 1;
|
|
|
|
}
|
|
|
|
sx = (sx << 2) >> lowres;
|
|
|
|
sy = (sy << 2) >> lowres;
|
|
|
|
pix_op[op_index](dest_cb, ptr, s->uvlinesize, block_s, sx, sy);
|
|
|
|
|
|
|
|
ptr = ref_picture[2] + offset;
|
|
|
|
if (emu) {
|
|
|
|
s->vdsp.emulated_edge_mc(s->sc.edge_emu_buffer, ptr,
|
|
|
|
s->uvlinesize, s->uvlinesize,
|
|
|
|
9, 9,
|
|
|
|
src_x, src_y, h_edge_pos, v_edge_pos);
|
|
|
|
ptr = s->sc.edge_emu_buffer;
|
|
|
|
}
|
|
|
|
pix_op[op_index](dest_cr, ptr, s->uvlinesize, block_s, sx, sy);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* motion compensation of a single macroblock
|
|
|
|
* @param s context
|
|
|
|
* @param dest_y luma destination pointer
|
|
|
|
* @param dest_cb chroma cb/u destination pointer
|
|
|
|
* @param dest_cr chroma cr/v destination pointer
|
|
|
|
* @param dir direction (0->forward, 1->backward)
|
|
|
|
* @param ref_picture array[3] of pointers to the 3 planes of the reference picture
|
|
|
|
* @param pix_op halfpel motion compensation function (average or put normally)
|
|
|
|
* the motion vectors are taken from s->mv and the MV type from s->mv_type
|
|
|
|
*/
|
|
|
|
static inline void MPV_motion_lowres(MpegEncContext *s,
|
|
|
|
uint8_t *dest_y, uint8_t *dest_cb,
|
|
|
|
uint8_t *dest_cr,
|
|
|
|
int dir, uint8_t *const *ref_picture,
|
|
|
|
const h264_chroma_mc_func *pix_op)
|
|
|
|
{
|
|
|
|
int mx, my;
|
|
|
|
int mb_x, mb_y;
|
|
|
|
const int lowres = s->avctx->lowres;
|
|
|
|
const int block_s = 8 >>lowres;
|
|
|
|
|
|
|
|
mb_x = s->mb_x;
|
|
|
|
mb_y = s->mb_y;
|
|
|
|
|
|
|
|
switch (s->mv_type) {
|
|
|
|
case MV_TYPE_16X16:
|
|
|
|
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
|
|
|
|
0, 0, 0,
|
|
|
|
ref_picture, pix_op,
|
|
|
|
s->mv[dir][0][0], s->mv[dir][0][1],
|
|
|
|
2 * block_s, mb_y);
|
|
|
|
break;
|
|
|
|
case MV_TYPE_8X8:
|
|
|
|
mx = 0;
|
|
|
|
my = 0;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
hpel_motion_lowres(s, dest_y + ((i & 1) + (i >> 1) *
|
|
|
|
s->linesize) * block_s,
|
|
|
|
ref_picture[0], 0, 0,
|
|
|
|
(2 * mb_x + (i & 1)) * block_s,
|
|
|
|
(2 * mb_y + (i >> 1)) * block_s,
|
|
|
|
s->width, s->height, s->linesize,
|
|
|
|
s->h_edge_pos >> lowres, s->v_edge_pos >> lowres,
|
|
|
|
block_s, block_s, pix_op,
|
|
|
|
s->mv[dir][i][0], s->mv[dir][i][1]);
|
|
|
|
|
|
|
|
mx += s->mv[dir][i][0];
|
|
|
|
my += s->mv[dir][i][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY))
|
|
|
|
chroma_4mv_motion_lowres(s, dest_cb, dest_cr, ref_picture,
|
|
|
|
pix_op, mx, my);
|
|
|
|
break;
|
|
|
|
case MV_TYPE_FIELD:
|
|
|
|
if (s->picture_structure == PICT_FRAME) {
|
|
|
|
/* top field */
|
|
|
|
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
|
|
|
|
1, 0, s->field_select[dir][0],
|
|
|
|
ref_picture, pix_op,
|
|
|
|
s->mv[dir][0][0], s->mv[dir][0][1],
|
|
|
|
block_s, mb_y);
|
|
|
|
/* bottom field */
|
|
|
|
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
|
|
|
|
1, 1, s->field_select[dir][1],
|
|
|
|
ref_picture, pix_op,
|
|
|
|
s->mv[dir][1][0], s->mv[dir][1][1],
|
|
|
|
block_s, mb_y);
|
|
|
|
} else {
|
|
|
|
if (s->picture_structure != s->field_select[dir][0] + 1 &&
|
|
|
|
s->pict_type != AV_PICTURE_TYPE_B && !s->first_field) {
|
|
|
|
ref_picture = s->cur_pic.ptr->f->data;
|
|
|
|
}
|
|
|
|
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
|
|
|
|
0, 0, s->field_select[dir][0],
|
|
|
|
ref_picture, pix_op,
|
|
|
|
s->mv[dir][0][0],
|
|
|
|
s->mv[dir][0][1], 2 * block_s, mb_y >> 1);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MV_TYPE_16X8:
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
uint8_t *const *ref2picture;
|
|
|
|
|
|
|
|
if (s->picture_structure == s->field_select[dir][i] + 1 ||
|
|
|
|
s->pict_type == AV_PICTURE_TYPE_B || s->first_field) {
|
|
|
|
ref2picture = ref_picture;
|
|
|
|
} else {
|
|
|
|
ref2picture = s->cur_pic.ptr->f->data;
|
|
|
|
}
|
|
|
|
|
|
|
|
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
|
|
|
|
0, 0, s->field_select[dir][i],
|
|
|
|
ref2picture, pix_op,
|
|
|
|
s->mv[dir][i][0], s->mv[dir][i][1] +
|
|
|
|
2 * block_s * i, block_s, mb_y >> 1);
|
|
|
|
|
|
|
|
dest_y += 2 * block_s * s->linesize;
|
|
|
|
dest_cb += (2 * block_s >> s->chroma_y_shift) * s->uvlinesize;
|
|
|
|
dest_cr += (2 * block_s >> s->chroma_y_shift) * s->uvlinesize;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case MV_TYPE_DMV:
|
|
|
|
if (s->picture_structure == PICT_FRAME) {
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
for (int j = 0; j < 2; j++) {
|
|
|
|
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
|
|
|
|
1, j, j ^ i,
|
|
|
|
ref_picture, pix_op,
|
|
|
|
s->mv[dir][2 * i + j][0],
|
|
|
|
s->mv[dir][2 * i + j][1],
|
|
|
|
block_s, mb_y);
|
|
|
|
}
|
|
|
|
pix_op = s->h264chroma.avg_h264_chroma_pixels_tab;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
|
|
mpeg_motion_lowres(s, dest_y, dest_cb, dest_cr,
|
|
|
|
0, 0, s->picture_structure != i + 1,
|
|
|
|
ref_picture, pix_op,
|
|
|
|
s->mv[dir][2 * i][0],s->mv[dir][2 * i][1],
|
|
|
|
2 * block_s, mb_y >> 1);
|
|
|
|
|
|
|
|
// after put we make avg of the same block
|
|
|
|
pix_op = s->h264chroma.avg_h264_chroma_pixels_tab;
|
|
|
|
|
|
|
|
// opposite parity is always in the same
|
|
|
|
// frame if this is second field
|
|
|
|
if (!s->first_field) {
|
|
|
|
ref_picture = s->cur_pic.ptr->f->data;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
av_assert2(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* find the lowest MB row referenced in the MVs
|
|
|
|
*/
|
|
|
|
static int lowest_referenced_row(MpegEncContext *s, int dir)
|
|
|
|
{
|
|
|
|
int my_max = INT_MIN, my_min = INT_MAX, qpel_shift = !s->quarter_sample;
|
|
|
|
int off, mvs;
|
|
|
|
|
|
|
|
if (s->picture_structure != PICT_FRAME || s->mcsel)
|
|
|
|
goto unhandled;
|
|
|
|
|
|
|
|
switch (s->mv_type) {
|
|
|
|
case MV_TYPE_16X16:
|
|
|
|
mvs = 1;
|
|
|
|
break;
|
|
|
|
case MV_TYPE_16X8:
|
|
|
|
mvs = 2;
|
|
|
|
break;
|
|
|
|
case MV_TYPE_8X8:
|
|
|
|
mvs = 4;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
goto unhandled;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int i = 0; i < mvs; i++) {
|
|
|
|
int my = s->mv[dir][i][1];
|
|
|
|
my_max = FFMAX(my_max, my);
|
|
|
|
my_min = FFMIN(my_min, my);
|
|
|
|
}
|
|
|
|
|
|
|
|
off = ((FFMAX(-my_min, my_max) << qpel_shift) + 63) >> 6;
|
|
|
|
|
|
|
|
return av_clip(s->mb_y + off, 0, s->mb_height - 1);
|
|
|
|
unhandled:
|
|
|
|
return s->mb_height - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* add block[] to dest[] */
|
|
|
|
static inline void add_dct(MpegEncContext *s,
|
|
|
|
int16_t *block, int i, uint8_t *dest, int line_size)
|
|
|
|
{
|
|
|
|
if (s->block_last_index[i] >= 0) {
|
|
|
|
s->idsp.idct_add(dest, line_size, block);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define IS_ENCODER 0
|
|
|
|
#include "mpv_reconstruct_mb_template.c"
|
|
|
|
|
|
|
|
void ff_mpv_reconstruct_mb(MpegEncContext *s, int16_t block[12][64])
|
|
|
|
{
|
|
|
|
if (s->avctx->debug & FF_DEBUG_DCT_COEFF) {
|
|
|
|
/* print DCT coefficients */
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "DCT coeffs of MB at %dx%d:\n", s->mb_x, s->mb_y);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
|
|
for (int j = 0; j < 64; j++) {
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "%5d",
|
|
|
|
block[i][s->idsp.idct_permutation[j]]);
|
|
|
|
}
|
|
|
|
av_log(s->avctx, AV_LOG_DEBUG, "\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
av_assert2((s->out_format <= FMT_H261) == (s->out_format == FMT_H261 || s->out_format == FMT_MPEG1));
|
|
|
|
if (!s->avctx->lowres) {
|
|
|
|
#if !CONFIG_SMALL
|
|
|
|
if (s->out_format <= FMT_H261)
|
|
|
|
mpv_reconstruct_mb_internal(s, block, 0, DEFINITELY_MPEG12_H261);
|
|
|
|
else
|
|
|
|
mpv_reconstruct_mb_internal(s, block, 0, NOT_MPEG12_H261);
|
|
|
|
#else
|
|
|
|
mpv_reconstruct_mb_internal(s, block, 0, MAY_BE_MPEG12_H261);
|
|
|
|
#endif
|
|
|
|
} else
|
|
|
|
mpv_reconstruct_mb_internal(s, block, 1, MAY_BE_MPEG12_H261);
|
|
|
|
}
|