You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

204 lines
7.7 KiB

/*
* AAC encoder twoloop coder
* Copyright (C) 2008-2009 Konstantin Shishkov
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* AAC encoder twoloop coder
* @author Konstantin Shishkov
*/
/**
* This file contains a template for the twoloop coder function.
* It needs to be provided, externally, as an already included declaration,
* the following functions from aacenc_quantization/util.h. They're not included
* explicitly here to make it possible to provide alternative implementations:
* - quantize_band_cost
* - abs_pow34_v
* - find_max_val
* - find_min_book
*/
#ifndef AVCODEC_AACCODER_TWOLOOP_H
#define AVCODEC_AACCODER_TWOLOOP_H
#include <float.h>
#include "libavutil/mathematics.h"
#include "avcodec.h"
#include "put_bits.h"
#include "aac.h"
#include "aacenc.h"
#include "aactab.h"
#include "aacenctab.h"
#include "aac_tablegen_decl.h"
/**
* two-loop quantizers search taken from ISO 13818-7 Appendix C
*/
static void search_for_quantizers_twoloop(AVCodecContext *avctx,
AACEncContext *s,
SingleChannelElement *sce,
const float lambda)
{
int start = 0, i, w, w2, g;
int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels * (lambda / 120.f);
float dists[128] = { 0 }, uplims[128] = { 0 };
float maxvals[128];
int fflag, minscaler;
int its = 0;
int allz = 0;
float minthr = INFINITY;
// for values above this the decoder might end up in an endless loop
// due to always having more bits than what can be encoded.
destbits = FFMIN(destbits, 5800);
//XXX: some heuristic to determine initial quantizers will reduce search time
//determine zero bands and upper limits
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
int nz = 0;
float uplim = 0.0f, energy = 0.0f;
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
uplim += band->threshold;
energy += band->energy;
if (band->energy <= band->threshold || band->threshold == 0.0f) {
sce->zeroes[(w+w2)*16+g] = 1;
continue;
}
nz = 1;
}
uplims[w*16+g] = uplim *512;
sce->zeroes[w*16+g] = !nz;
if (nz)
minthr = FFMIN(minthr, uplim);
allz |= nz;
}
}
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
if (sce->zeroes[w*16+g]) {
sce->sf_idx[w*16+g] = SCALE_ONE_POS;
continue;
}
sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
}
}
if (!allz)
return;
abs_pow34_v(s->scoefs, sce->coeffs, 1024);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *scaled = s->scoefs + start;
maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
start += sce->ics.swb_sizes[g];
}
}
//perform two-loop search
//outer loop - improve quality
do {
int tbits, qstep;
minscaler = sce->sf_idx[0];
//inner loop - quantize spectrum to fit into given number of bits
qstep = its ? 1 : 32;
do {
int prev = -1;
tbits = 0;
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = w*128;
for (g = 0; g < sce->ics.num_swb; g++) {
const float *coefs = &sce->coeffs[start];
const float *scaled = &s->scoefs[start];
int bits = 0;
int cb;
float dist = 0.0f;
if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
start += sce->ics.swb_sizes[g];
continue;
}
minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
int b;
dist += quantize_band_cost(s, coefs + w2*128,
scaled + w2*128,
sce->ics.swb_sizes[g],
sce->sf_idx[w*16+g],
cb,
1.0f,
INFINITY,
&b,
0);
bits += b;
}
dists[w*16+g] = dist - bits;
if (prev != -1) {
bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
}
tbits += bits;
start += sce->ics.swb_sizes[g];
prev = sce->sf_idx[w*16+g];
}
}
if (tbits > destbits) {
for (i = 0; i < 128; i++)
if (sce->sf_idx[i] < 218 - qstep)
sce->sf_idx[i] += qstep;
} else {
for (i = 0; i < 128; i++)
if (sce->sf_idx[i] > 60 - qstep)
sce->sf_idx[i] -= qstep;
}
qstep >>= 1;
if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
qstep = 1;
} while (qstep);
fflag = 0;
minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
for (g = 0; g < sce->ics.num_swb; g++) {
int prevsc = sce->sf_idx[w*16+g];
if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
sce->sf_idx[w*16+g]--;
else //Try to make sure there is some energy in every band
sce->sf_idx[w*16+g]-=2;
}
sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
if (sce->sf_idx[w*16+g] != prevsc)
fflag = 1;
sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
}
}
its++;
} while (fflag && its < 10);
}
#endif /* AVCODEC_AACCODER_TWOLOOP_H */