|
|
|
/*
|
|
|
|
* generic decoding-related code
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#if CONFIG_ICONV
|
|
|
|
# include <iconv.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "libavutil/avassert.h"
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
#include "libavutil/avstring.h"
|
|
|
|
#include "libavutil/bprint.h"
|
|
|
|
#include "libavutil/common.h"
|
|
|
|
#include "libavutil/frame.h"
|
|
|
|
#include "libavutil/hwcontext.h"
|
|
|
|
#include "libavutil/imgutils.h"
|
|
|
|
#include "libavutil/internal.h"
|
|
|
|
|
|
|
|
#include "avcodec.h"
|
|
|
|
#include "bytestream.h"
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
#include "decode.h"
|
|
|
|
#include "internal.h"
|
|
|
|
#include "thread.h"
|
|
|
|
|
|
|
|
static int apply_param_change(AVCodecContext *avctx, const AVPacket *avpkt)
|
|
|
|
{
|
|
|
|
int size = 0, ret;
|
|
|
|
const uint8_t *data;
|
|
|
|
uint32_t flags;
|
|
|
|
int64_t val;
|
|
|
|
|
|
|
|
data = av_packet_get_side_data(avpkt, AV_PKT_DATA_PARAM_CHANGE, &size);
|
|
|
|
if (!data)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (!(avctx->codec->capabilities & AV_CODEC_CAP_PARAM_CHANGE)) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "This decoder does not support parameter "
|
|
|
|
"changes, but PARAM_CHANGE side data was sent to it.\n");
|
|
|
|
ret = AVERROR(EINVAL);
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size < 4)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
flags = bytestream_get_le32(&data);
|
|
|
|
size -= 4;
|
|
|
|
|
|
|
|
if (flags & AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_COUNT) {
|
|
|
|
if (size < 4)
|
|
|
|
goto fail;
|
|
|
|
val = bytestream_get_le32(&data);
|
|
|
|
if (val <= 0 || val > INT_MAX) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid channel count");
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
avctx->channels = val;
|
|
|
|
size -= 4;
|
|
|
|
}
|
|
|
|
if (flags & AV_SIDE_DATA_PARAM_CHANGE_CHANNEL_LAYOUT) {
|
|
|
|
if (size < 8)
|
|
|
|
goto fail;
|
|
|
|
avctx->channel_layout = bytestream_get_le64(&data);
|
|
|
|
size -= 8;
|
|
|
|
}
|
|
|
|
if (flags & AV_SIDE_DATA_PARAM_CHANGE_SAMPLE_RATE) {
|
|
|
|
if (size < 4)
|
|
|
|
goto fail;
|
|
|
|
val = bytestream_get_le32(&data);
|
|
|
|
if (val <= 0 || val > INT_MAX) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid sample rate");
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
avctx->sample_rate = val;
|
|
|
|
size -= 4;
|
|
|
|
}
|
|
|
|
if (flags & AV_SIDE_DATA_PARAM_CHANGE_DIMENSIONS) {
|
|
|
|
if (size < 8)
|
|
|
|
goto fail;
|
|
|
|
avctx->width = bytestream_get_le32(&data);
|
|
|
|
avctx->height = bytestream_get_le32(&data);
|
|
|
|
size -= 8;
|
|
|
|
ret = ff_set_dimensions(avctx, avctx->width, avctx->height);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail2;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "PARAM_CHANGE side data too small.\n");
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
|
|
fail2:
|
|
|
|
if (ret < 0) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Error applying parameter changes.\n");
|
|
|
|
if (avctx->err_recognition & AV_EF_EXPLODE)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int extract_packet_props(AVCodecInternal *avci, const AVPacket *pkt)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
av_packet_unref(avci->last_pkt_props);
|
|
|
|
if (pkt) {
|
|
|
|
ret = av_packet_copy_props(avci->last_pkt_props, pkt);
|
|
|
|
if (!ret)
|
|
|
|
avci->last_pkt_props->size = pkt->size; // HACK: Needed for ff_init_buffer_info().
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int unrefcount_frame(AVCodecInternal *avci, AVFrame *frame)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* move the original frame to our backup */
|
|
|
|
av_frame_unref(avci->to_free);
|
|
|
|
av_frame_move_ref(avci->to_free, frame);
|
|
|
|
|
|
|
|
/* now copy everything except the AVBufferRefs back
|
|
|
|
* note that we make a COPY of the side data, so calling av_frame_free() on
|
|
|
|
* the caller's frame will work properly */
|
|
|
|
ret = av_frame_copy_props(frame, avci->to_free);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
memcpy(frame->data, avci->to_free->data, sizeof(frame->data));
|
|
|
|
memcpy(frame->linesize, avci->to_free->linesize, sizeof(frame->linesize));
|
|
|
|
if (avci->to_free->extended_data != avci->to_free->data) {
|
|
|
|
int planes = avci->to_free->channels;
|
|
|
|
int size = planes * sizeof(*frame->extended_data);
|
|
|
|
|
|
|
|
if (!size) {
|
|
|
|
av_frame_unref(frame);
|
|
|
|
return AVERROR_BUG;
|
|
|
|
}
|
|
|
|
|
|
|
|
frame->extended_data = av_malloc(size);
|
|
|
|
if (!frame->extended_data) {
|
|
|
|
av_frame_unref(frame);
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
memcpy(frame->extended_data, avci->to_free->extended_data,
|
|
|
|
size);
|
|
|
|
} else
|
|
|
|
frame->extended_data = frame->data;
|
|
|
|
|
|
|
|
frame->format = avci->to_free->format;
|
|
|
|
frame->width = avci->to_free->width;
|
|
|
|
frame->height = avci->to_free->height;
|
|
|
|
frame->channel_layout = avci->to_free->channel_layout;
|
|
|
|
frame->nb_samples = avci->to_free->nb_samples;
|
|
|
|
frame->channels = avci->to_free->channels;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bsfs_init(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
AVCodecInternal *avci = avctx->internal;
|
|
|
|
DecodeFilterContext *s = &avci->filter;
|
|
|
|
const char *bsfs_str;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (s->nb_bsfs)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
bsfs_str = avctx->codec->bsfs ? avctx->codec->bsfs : "null";
|
|
|
|
while (bsfs_str && *bsfs_str) {
|
|
|
|
AVBSFContext **tmp;
|
|
|
|
const AVBitStreamFilter *filter;
|
|
|
|
char *bsf;
|
|
|
|
|
|
|
|
bsf = av_get_token(&bsfs_str, ",");
|
|
|
|
if (!bsf) {
|
|
|
|
ret = AVERROR(ENOMEM);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
filter = av_bsf_get_by_name(bsf);
|
|
|
|
if (!filter) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "A non-existing bitstream filter %s "
|
|
|
|
"requested by a decoder. This is a bug, please report it.\n",
|
|
|
|
bsf);
|
|
|
|
ret = AVERROR_BUG;
|
|
|
|
av_freep(&bsf);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
av_freep(&bsf);
|
|
|
|
|
|
|
|
tmp = av_realloc_array(s->bsfs, s->nb_bsfs + 1, sizeof(*s->bsfs));
|
|
|
|
if (!tmp) {
|
|
|
|
ret = AVERROR(ENOMEM);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
s->bsfs = tmp;
|
|
|
|
s->nb_bsfs++;
|
|
|
|
|
|
|
|
ret = av_bsf_alloc(filter, &s->bsfs[s->nb_bsfs - 1]);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
if (s->nb_bsfs == 1) {
|
|
|
|
/* We do not currently have an API for passing the input timebase into decoders,
|
|
|
|
* but no filters used here should actually need it.
|
|
|
|
* So we make up some plausible-looking number (the MPEG 90kHz timebase) */
|
|
|
|
s->bsfs[s->nb_bsfs - 1]->time_base_in = (AVRational){ 1, 90000 };
|
|
|
|
ret = avcodec_parameters_from_context(s->bsfs[s->nb_bsfs - 1]->par_in,
|
|
|
|
avctx);
|
|
|
|
} else {
|
|
|
|
s->bsfs[s->nb_bsfs - 1]->time_base_in = s->bsfs[s->nb_bsfs - 2]->time_base_out;
|
|
|
|
ret = avcodec_parameters_copy(s->bsfs[s->nb_bsfs - 1]->par_in,
|
|
|
|
s->bsfs[s->nb_bsfs - 2]->par_out);
|
|
|
|
}
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
ret = av_bsf_init(s->bsfs[s->nb_bsfs - 1]);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
ff_decode_bsfs_uninit(avctx);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* try to get one output packet from the filter chain */
|
|
|
|
static int bsfs_poll(AVCodecContext *avctx, AVPacket *pkt)
|
|
|
|
{
|
|
|
|
DecodeFilterContext *s = &avctx->internal->filter;
|
|
|
|
int idx, ret;
|
|
|
|
|
|
|
|
/* start with the last filter in the chain */
|
|
|
|
idx = s->nb_bsfs - 1;
|
|
|
|
while (idx >= 0) {
|
|
|
|
/* request a packet from the currently selected filter */
|
|
|
|
ret = av_bsf_receive_packet(s->bsfs[idx], pkt);
|
|
|
|
if (ret == AVERROR(EAGAIN)) {
|
|
|
|
/* no packets available, try the next filter up the chain */
|
|
|
|
ret = 0;
|
|
|
|
idx--;
|
|
|
|
continue;
|
|
|
|
} else if (ret < 0 && ret != AVERROR_EOF) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* got a packet or EOF -- pass it to the caller or to the next filter
|
|
|
|
* down the chain */
|
|
|
|
if (idx == s->nb_bsfs - 1) {
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
idx++;
|
|
|
|
ret = av_bsf_send_packet(s->bsfs[idx], ret < 0 ? NULL : pkt);
|
|
|
|
if (ret < 0) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
|
|
"Error pre-processing a packet before decoding\n");
|
|
|
|
av_packet_unref(pkt);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return AVERROR(EAGAIN);
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
int ff_decode_get_packet(AVCodecContext *avctx, AVPacket *pkt)
|
|
|
|
{
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
AVCodecInternal *avci = avctx->internal;
|
|
|
|
int ret;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (avci->draining)
|
|
|
|
return AVERROR_EOF;
|
|
|
|
|
|
|
|
ret = bsfs_poll(avctx, pkt);
|
|
|
|
if (ret == AVERROR_EOF)
|
|
|
|
avci->draining = 1;
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
|
|
|
|
ret = extract_packet_props(avctx->internal, pkt);
|
|
|
|
if (ret < 0)
|
|
|
|
goto finish;
|
|
|
|
|
|
|
|
ret = apply_param_change(avctx, pkt);
|
|
|
|
if (ret < 0)
|
|
|
|
goto finish;
|
|
|
|
|
|
|
|
if (avctx->codec->receive_frame)
|
|
|
|
avci->compat_decode_consumed += pkt->size;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
return 0;
|
|
|
|
finish:
|
|
|
|
av_packet_unref(pkt);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Attempt to guess proper monotonic timestamps for decoded video frames
|
|
|
|
* which might have incorrect times. Input timestamps may wrap around, in
|
|
|
|
* which case the output will as well.
|
|
|
|
*
|
|
|
|
* @param pts the pts field of the decoded AVPacket, as passed through
|
|
|
|
* AVFrame.pts
|
|
|
|
* @param dts the dts field of the decoded AVPacket
|
|
|
|
* @return one of the input values, may be AV_NOPTS_VALUE
|
|
|
|
*/
|
|
|
|
static int64_t guess_correct_pts(AVCodecContext *ctx,
|
|
|
|
int64_t reordered_pts, int64_t dts)
|
|
|
|
{
|
|
|
|
int64_t pts = AV_NOPTS_VALUE;
|
|
|
|
|
|
|
|
if (dts != AV_NOPTS_VALUE) {
|
|
|
|
ctx->pts_correction_num_faulty_dts += dts <= ctx->pts_correction_last_dts;
|
|
|
|
ctx->pts_correction_last_dts = dts;
|
|
|
|
} else if (reordered_pts != AV_NOPTS_VALUE)
|
|
|
|
ctx->pts_correction_last_dts = reordered_pts;
|
|
|
|
|
|
|
|
if (reordered_pts != AV_NOPTS_VALUE) {
|
|
|
|
ctx->pts_correction_num_faulty_pts += reordered_pts <= ctx->pts_correction_last_pts;
|
|
|
|
ctx->pts_correction_last_pts = reordered_pts;
|
|
|
|
} else if(dts != AV_NOPTS_VALUE)
|
|
|
|
ctx->pts_correction_last_pts = dts;
|
|
|
|
|
|
|
|
if ((ctx->pts_correction_num_faulty_pts<=ctx->pts_correction_num_faulty_dts || dts == AV_NOPTS_VALUE)
|
|
|
|
&& reordered_pts != AV_NOPTS_VALUE)
|
|
|
|
pts = reordered_pts;
|
|
|
|
else
|
|
|
|
pts = dts;
|
|
|
|
|
|
|
|
return pts;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
/*
|
|
|
|
* The core of the receive_frame_wrapper for the decoders implementing
|
|
|
|
* the simple API. Certain decoders might consume partial packets without
|
|
|
|
* returning any output, so this function needs to be called in a loop until it
|
|
|
|
* returns EAGAIN.
|
|
|
|
**/
|
|
|
|
static int decode_simple_internal(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
AVCodecInternal *avci = avctx->internal;
|
|
|
|
DecodeSimpleContext *ds = &avci->ds;
|
|
|
|
AVPacket *pkt = ds->in_pkt;
|
|
|
|
// copy to ensure we do not change pkt
|
|
|
|
AVPacket tmp;
|
|
|
|
int got_frame, actual_got_frame, did_split;
|
|
|
|
int ret;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (!pkt->data && !avci->draining) {
|
|
|
|
av_packet_unref(pkt);
|
|
|
|
ret = ff_decode_get_packet(avctx, pkt);
|
|
|
|
if (ret < 0 && ret != AVERROR_EOF)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Some codecs (at least wma lossless) will crash when feeding drain packets
|
|
|
|
// after EOF was signaled.
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (avci->draining_done)
|
|
|
|
return AVERROR_EOF;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (!pkt->data &&
|
|
|
|
!(avctx->codec->capabilities & AV_CODEC_CAP_DELAY ||
|
|
|
|
avctx->active_thread_type & FF_THREAD_FRAME))
|
|
|
|
return AVERROR_EOF;
|
|
|
|
|
|
|
|
tmp = *pkt;
|
|
|
|
#if FF_API_MERGE_SD
|
|
|
|
FF_DISABLE_DEPRECATION_WARNINGS
|
|
|
|
did_split = av_packet_split_side_data(&tmp);
|
|
|
|
|
|
|
|
if (did_split) {
|
|
|
|
ret = extract_packet_props(avctx->internal, &tmp);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = apply_param_change(avctx, &tmp);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
FF_ENABLE_DEPRECATION_WARNINGS
|
|
|
|
#endif
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
got_frame = 0;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (HAVE_THREADS && avctx->active_thread_type & FF_THREAD_FRAME) {
|
|
|
|
ret = ff_thread_decode_frame(avctx, frame, &got_frame, &tmp);
|
|
|
|
} else {
|
|
|
|
ret = avctx->codec->decode(avctx, frame, &got_frame, &tmp);
|
|
|
|
|
|
|
|
if (!(avctx->codec->caps_internal & FF_CODEC_CAP_SETS_PKT_DTS))
|
|
|
|
frame->pkt_dts = pkt->dts;
|
|
|
|
if (avctx->codec->type == AVMEDIA_TYPE_VIDEO) {
|
|
|
|
if(!avctx->has_b_frames)
|
|
|
|
frame->pkt_pos = pkt->pos;
|
|
|
|
//FIXME these should be under if(!avctx->has_b_frames)
|
|
|
|
/* get_buffer is supposed to set frame parameters */
|
|
|
|
if (!(avctx->codec->capabilities & AV_CODEC_CAP_DR1)) {
|
|
|
|
if (!frame->sample_aspect_ratio.num) frame->sample_aspect_ratio = avctx->sample_aspect_ratio;
|
|
|
|
if (!frame->width) frame->width = avctx->width;
|
|
|
|
if (!frame->height) frame->height = avctx->height;
|
|
|
|
if (frame->format == AV_PIX_FMT_NONE) frame->format = avctx->pix_fmt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
emms_c();
|
|
|
|
actual_got_frame = got_frame;
|
|
|
|
|
|
|
|
if (avctx->codec->type == AVMEDIA_TYPE_VIDEO) {
|
|
|
|
if (frame->flags & AV_FRAME_FLAG_DISCARD)
|
|
|
|
got_frame = 0;
|
|
|
|
if (got_frame)
|
|
|
|
frame->best_effort_timestamp = guess_correct_pts(avctx,
|
|
|
|
frame->pts,
|
|
|
|
frame->pkt_dts);
|
|
|
|
} else if (avctx->codec->type == AVMEDIA_TYPE_AUDIO) {
|
|
|
|
uint8_t *side;
|
|
|
|
int side_size;
|
|
|
|
uint32_t discard_padding = 0;
|
|
|
|
uint8_t skip_reason = 0;
|
|
|
|
uint8_t discard_reason = 0;
|
|
|
|
|
|
|
|
if (ret >= 0 && got_frame) {
|
|
|
|
frame->best_effort_timestamp = guess_correct_pts(avctx,
|
|
|
|
frame->pts,
|
|
|
|
frame->pkt_dts);
|
|
|
|
if (frame->format == AV_SAMPLE_FMT_NONE)
|
|
|
|
frame->format = avctx->sample_fmt;
|
|
|
|
if (!frame->channel_layout)
|
|
|
|
frame->channel_layout = avctx->channel_layout;
|
|
|
|
if (!frame->channels)
|
|
|
|
frame->channels = avctx->channels;
|
|
|
|
if (!frame->sample_rate)
|
|
|
|
frame->sample_rate = avctx->sample_rate;
|
|
|
|
}
|
|
|
|
|
|
|
|
side= av_packet_get_side_data(pkt, AV_PKT_DATA_SKIP_SAMPLES, &side_size);
|
|
|
|
if(side && side_size>=10) {
|
|
|
|
avctx->internal->skip_samples = AV_RL32(side) * avctx->internal->skip_samples_multiplier;
|
|
|
|
discard_padding = AV_RL32(side + 4);
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, "skip %d / discard %d samples due to side data\n",
|
|
|
|
avctx->internal->skip_samples, (int)discard_padding);
|
|
|
|
skip_reason = AV_RL8(side + 8);
|
|
|
|
discard_reason = AV_RL8(side + 9);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((frame->flags & AV_FRAME_FLAG_DISCARD) && got_frame &&
|
|
|
|
!(avctx->flags2 & AV_CODEC_FLAG2_SKIP_MANUAL)) {
|
|
|
|
avctx->internal->skip_samples = FFMAX(0, avctx->internal->skip_samples - frame->nb_samples);
|
|
|
|
got_frame = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (avctx->internal->skip_samples > 0 && got_frame &&
|
|
|
|
!(avctx->flags2 & AV_CODEC_FLAG2_SKIP_MANUAL)) {
|
|
|
|
if(frame->nb_samples <= avctx->internal->skip_samples){
|
|
|
|
got_frame = 0;
|
|
|
|
avctx->internal->skip_samples -= frame->nb_samples;
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, "skip whole frame, skip left: %d\n",
|
|
|
|
avctx->internal->skip_samples);
|
|
|
|
} else {
|
|
|
|
av_samples_copy(frame->extended_data, frame->extended_data, 0, avctx->internal->skip_samples,
|
|
|
|
frame->nb_samples - avctx->internal->skip_samples, avctx->channels, frame->format);
|
|
|
|
if(avctx->pkt_timebase.num && avctx->sample_rate) {
|
|
|
|
int64_t diff_ts = av_rescale_q(avctx->internal->skip_samples,
|
|
|
|
(AVRational){1, avctx->sample_rate},
|
|
|
|
avctx->pkt_timebase);
|
|
|
|
if(frame->pts!=AV_NOPTS_VALUE)
|
|
|
|
frame->pts += diff_ts;
|
|
|
|
#if FF_API_PKT_PTS
|
|
|
|
FF_DISABLE_DEPRECATION_WARNINGS
|
|
|
|
if(frame->pkt_pts!=AV_NOPTS_VALUE)
|
|
|
|
frame->pkt_pts += diff_ts;
|
|
|
|
FF_ENABLE_DEPRECATION_WARNINGS
|
|
|
|
#endif
|
|
|
|
if(frame->pkt_dts!=AV_NOPTS_VALUE)
|
|
|
|
frame->pkt_dts += diff_ts;
|
|
|
|
if (frame->pkt_duration >= diff_ts)
|
|
|
|
frame->pkt_duration -= diff_ts;
|
|
|
|
} else {
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "Could not update timestamps for skipped samples.\n");
|
|
|
|
}
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, "skip %d/%d samples\n",
|
|
|
|
avctx->internal->skip_samples, frame->nb_samples);
|
|
|
|
frame->nb_samples -= avctx->internal->skip_samples;
|
|
|
|
avctx->internal->skip_samples = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (discard_padding > 0 && discard_padding <= frame->nb_samples && got_frame &&
|
|
|
|
!(avctx->flags2 & AV_CODEC_FLAG2_SKIP_MANUAL)) {
|
|
|
|
if (discard_padding == frame->nb_samples) {
|
|
|
|
got_frame = 0;
|
|
|
|
} else {
|
|
|
|
if(avctx->pkt_timebase.num && avctx->sample_rate) {
|
|
|
|
int64_t diff_ts = av_rescale_q(frame->nb_samples - discard_padding,
|
|
|
|
(AVRational){1, avctx->sample_rate},
|
|
|
|
avctx->pkt_timebase);
|
|
|
|
frame->pkt_duration = diff_ts;
|
|
|
|
} else {
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "Could not update timestamps for discarded samples.\n");
|
|
|
|
}
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, "discard %d/%d samples\n",
|
|
|
|
(int)discard_padding, frame->nb_samples);
|
|
|
|
frame->nb_samples -= discard_padding;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((avctx->flags2 & AV_CODEC_FLAG2_SKIP_MANUAL) && got_frame) {
|
|
|
|
AVFrameSideData *fside = av_frame_new_side_data(frame, AV_FRAME_DATA_SKIP_SAMPLES, 10);
|
|
|
|
if (fside) {
|
|
|
|
AV_WL32(fside->data, avctx->internal->skip_samples);
|
|
|
|
AV_WL32(fside->data + 4, discard_padding);
|
|
|
|
AV_WL8(fside->data + 8, skip_reason);
|
|
|
|
AV_WL8(fside->data + 9, discard_reason);
|
|
|
|
avctx->internal->skip_samples = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#if FF_API_MERGE_SD
|
|
|
|
if (did_split) {
|
|
|
|
av_packet_free_side_data(&tmp);
|
|
|
|
if(ret == tmp.size)
|
|
|
|
ret = pkt->size;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (avctx->codec->type == AVMEDIA_TYPE_AUDIO &&
|
|
|
|
!avci->showed_multi_packet_warning &&
|
|
|
|
ret >= 0 && ret != pkt->size && !(avctx->codec->capabilities & AV_CODEC_CAP_SUBFRAMES)) {
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "Multiple frames in a packet.\n");
|
|
|
|
avci->showed_multi_packet_warning = 1;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (!got_frame)
|
|
|
|
av_frame_unref(frame);
|
|
|
|
|
|
|
|
if (ret >= 0 && avctx->codec->type == AVMEDIA_TYPE_VIDEO && !(avctx->flags & AV_CODEC_FLAG_TRUNCATED))
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
ret = pkt->size;
|
|
|
|
|
|
|
|
#if FF_API_AVCTX_TIMEBASE
|
|
|
|
if (avctx->framerate.num > 0 && avctx->framerate.den > 0)
|
|
|
|
avctx->time_base = av_inv_q(av_mul_q(avctx->framerate, (AVRational){avctx->ticks_per_frame, 1}));
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
#endif
|
|
|
|
|
|
|
|
/* do not stop draining when actual_got_frame != 0 or ret < 0 */
|
|
|
|
/* got_frame == 0 but actual_got_frame != 0 when frame is discarded */
|
|
|
|
if (avctx->internal->draining && !actual_got_frame) {
|
|
|
|
if (ret < 0) {
|
|
|
|
/* prevent infinite loop if a decoder wrongly always return error on draining */
|
|
|
|
/* reasonable nb_errors_max = maximum b frames + thread count */
|
|
|
|
int nb_errors_max = 20 + (HAVE_THREADS && avctx->active_thread_type & FF_THREAD_FRAME ?
|
|
|
|
avctx->thread_count : 1);
|
|
|
|
|
|
|
|
if (avci->nb_draining_errors++ >= nb_errors_max) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Too many errors when draining, this is a bug. "
|
|
|
|
"Stop draining and force EOF.\n");
|
|
|
|
avci->draining_done = 1;
|
|
|
|
ret = AVERROR_BUG;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
avci->draining_done = 1;
|
|
|
|
}
|
|
|
|
}
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
|
|
|
|
avci->compat_decode_consumed += ret;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (ret >= pkt->size || ret < 0) {
|
|
|
|
av_packet_unref(pkt);
|
|
|
|
} else {
|
|
|
|
int consumed = ret;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
pkt->data += consumed;
|
|
|
|
pkt->size -= consumed;
|
|
|
|
avci->last_pkt_props->size -= consumed; // See extract_packet_props() comment.
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
pkt->pts = AV_NOPTS_VALUE;
|
|
|
|
pkt->dts = AV_NOPTS_VALUE;
|
|
|
|
avci->last_pkt_props->pts = AV_NOPTS_VALUE;
|
|
|
|
avci->last_pkt_props->dts = AV_NOPTS_VALUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (got_frame)
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
av_assert0(frame->buf[0]);
|
|
|
|
|
|
|
|
return ret < 0 ? ret : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int decode_simple_receive_frame(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
while (!frame->buf[0]) {
|
|
|
|
ret = decode_simple_internal(avctx, frame);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
static int decode_receive_frame_internal(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
AVCodecInternal *avci = avctx->internal;
|
|
|
|
int ret;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
av_assert0(!frame->buf[0]);
|
|
|
|
|
|
|
|
if (avctx->codec->receive_frame)
|
|
|
|
ret = avctx->codec->receive_frame(avctx, frame);
|
|
|
|
else
|
|
|
|
ret = decode_simple_receive_frame(avctx, frame);
|
|
|
|
|
|
|
|
if (ret == AVERROR_EOF)
|
|
|
|
avci->draining_done = 1;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int attribute_align_arg avcodec_send_packet(AVCodecContext *avctx, const AVPacket *avpkt)
|
|
|
|
{
|
|
|
|
AVCodecInternal *avci = avctx->internal;
|
|
|
|
int ret;
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
|
|
|
|
if (!avcodec_is_open(avctx) || !av_codec_is_decoder(avctx->codec))
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
|
|
|
|
if (avctx->internal->draining)
|
|
|
|
return AVERROR_EOF;
|
|
|
|
|
|
|
|
if (avpkt && !avpkt->size && avpkt->data)
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
|
|
|
|
ret = bsfs_init(avctx);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
|
|
|
|
av_packet_unref(avci->buffer_pkt);
|
|
|
|
if (avpkt && (avpkt->data || avpkt->side_data_elems)) {
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
ret = av_packet_ref(avci->buffer_pkt, avpkt);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = av_bsf_send_packet(avci->filter.bsfs[0], avci->buffer_pkt);
|
|
|
|
if (ret < 0) {
|
|
|
|
av_packet_unref(avci->buffer_pkt);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (!avci->buffer_frame->buf[0]) {
|
|
|
|
ret = decode_receive_frame_internal(avctx, avci->buffer_frame);
|
|
|
|
if (ret < 0 && ret != AVERROR(EAGAIN) && ret != AVERROR_EOF)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int attribute_align_arg avcodec_receive_frame(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
AVCodecInternal *avci = avctx->internal;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
av_frame_unref(frame);
|
|
|
|
|
|
|
|
if (!avcodec_is_open(avctx) || !av_codec_is_decoder(avctx->codec))
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
|
|
|
|
ret = bsfs_init(avctx);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (avci->buffer_frame->buf[0]) {
|
|
|
|
av_frame_move_ref(frame, avci->buffer_frame);
|
|
|
|
} else {
|
|
|
|
ret = decode_receive_frame_internal(avctx, frame);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
avctx->frame_number++;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
static int compat_decode(AVCodecContext *avctx, AVFrame *frame,
|
|
|
|
int *got_frame, const AVPacket *pkt)
|
|
|
|
{
|
|
|
|
AVCodecInternal *avci = avctx->internal;
|
|
|
|
int ret = 0;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
av_assert0(avci->compat_decode_consumed == 0);
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
*got_frame = 0;
|
|
|
|
avci->compat_decode = 1;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (avci->compat_decode_partial_size > 0 &&
|
|
|
|
avci->compat_decode_partial_size != pkt->size) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
|
|
"Got unexpected packet size after a partial decode\n");
|
|
|
|
ret = AVERROR(EINVAL);
|
|
|
|
goto finish;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (!avci->compat_decode_partial_size) {
|
|
|
|
ret = avcodec_send_packet(avctx, pkt);
|
|
|
|
if (ret == AVERROR_EOF)
|
|
|
|
ret = 0;
|
|
|
|
else if (ret == AVERROR(EAGAIN)) {
|
|
|
|
/* we fully drain all the output in each decode call, so this should not
|
|
|
|
* ever happen */
|
|
|
|
ret = AVERROR_BUG;
|
|
|
|
goto finish;
|
|
|
|
} else if (ret < 0)
|
|
|
|
goto finish;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
while (ret >= 0) {
|
|
|
|
ret = avcodec_receive_frame(avctx, frame);
|
|
|
|
if (ret < 0) {
|
|
|
|
if (ret == AVERROR(EAGAIN) || ret == AVERROR_EOF)
|
|
|
|
ret = 0;
|
|
|
|
goto finish;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
if (frame != avci->compat_decode_frame) {
|
|
|
|
if (!avctx->refcounted_frames) {
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
ret = unrefcount_frame(avci, frame);
|
|
|
|
if (ret < 0)
|
|
|
|
goto finish;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
*got_frame = 1;
|
|
|
|
frame = avci->compat_decode_frame;
|
|
|
|
} else {
|
|
|
|
if (!avci->compat_decode_warned) {
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "The deprecated avcodec_decode_* "
|
|
|
|
"API cannot return all the frames for this decoder. "
|
|
|
|
"Some frames will be dropped. Update your code to the "
|
|
|
|
"new decoding API to fix this.\n");
|
|
|
|
avci->compat_decode_warned = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (avci->draining || (!avctx->codec->bsfs && avci->compat_decode_consumed < pkt->size))
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
finish:
|
|
|
|
if (ret == 0) {
|
|
|
|
/* if there are any bsfs then assume full packet is always consumed */
|
|
|
|
if (avctx->codec->bsfs)
|
|
|
|
ret = pkt->size;
|
|
|
|
else
|
|
|
|
ret = FFMIN(avci->compat_decode_consumed, pkt->size);
|
|
|
|
}
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
avci->compat_decode_consumed = 0;
|
|
|
|
avci->compat_decode_partial_size = (ret >= 0) ? pkt->size - ret : 0;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
int attribute_align_arg avcodec_decode_video2(AVCodecContext *avctx, AVFrame *picture,
|
|
|
|
int *got_picture_ptr,
|
|
|
|
const AVPacket *avpkt)
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
{
|
|
|
|
return compat_decode(avctx, picture, got_picture_ptr, avpkt);
|
|
|
|
}
|
|
|
|
|
|
|
|
int attribute_align_arg avcodec_decode_audio4(AVCodecContext *avctx,
|
|
|
|
AVFrame *frame,
|
|
|
|
int *got_frame_ptr,
|
|
|
|
const AVPacket *avpkt)
|
|
|
|
{
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
return compat_decode(avctx, frame, got_frame_ptr, avpkt);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void get_subtitle_defaults(AVSubtitle *sub)
|
|
|
|
{
|
|
|
|
memset(sub, 0, sizeof(*sub));
|
|
|
|
sub->pts = AV_NOPTS_VALUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define UTF8_MAX_BYTES 4 /* 5 and 6 bytes sequences should not be used */
|
|
|
|
static int recode_subtitle(AVCodecContext *avctx,
|
|
|
|
AVPacket *outpkt, const AVPacket *inpkt)
|
|
|
|
{
|
|
|
|
#if CONFIG_ICONV
|
|
|
|
iconv_t cd = (iconv_t)-1;
|
|
|
|
int ret = 0;
|
|
|
|
char *inb, *outb;
|
|
|
|
size_t inl, outl;
|
|
|
|
AVPacket tmp;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (avctx->sub_charenc_mode != FF_SUB_CHARENC_MODE_PRE_DECODER || inpkt->size == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
#if CONFIG_ICONV
|
|
|
|
cd = iconv_open("UTF-8", avctx->sub_charenc);
|
|
|
|
av_assert0(cd != (iconv_t)-1);
|
|
|
|
|
|
|
|
inb = inpkt->data;
|
|
|
|
inl = inpkt->size;
|
|
|
|
|
|
|
|
if (inl >= INT_MAX / UTF8_MAX_BYTES - AV_INPUT_BUFFER_PADDING_SIZE) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Subtitles packet is too big for recoding\n");
|
|
|
|
ret = AVERROR(ENOMEM);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = av_new_packet(&tmp, inl * UTF8_MAX_BYTES);
|
|
|
|
if (ret < 0)
|
|
|
|
goto end;
|
|
|
|
outpkt->buf = tmp.buf;
|
|
|
|
outpkt->data = tmp.data;
|
|
|
|
outpkt->size = tmp.size;
|
|
|
|
outb = outpkt->data;
|
|
|
|
outl = outpkt->size;
|
|
|
|
|
|
|
|
if (iconv(cd, &inb, &inl, &outb, &outl) == (size_t)-1 ||
|
|
|
|
iconv(cd, NULL, NULL, &outb, &outl) == (size_t)-1 ||
|
|
|
|
outl >= outpkt->size || inl != 0) {
|
|
|
|
ret = FFMIN(AVERROR(errno), -1);
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Unable to recode subtitle event \"%s\" "
|
|
|
|
"from %s to UTF-8\n", inpkt->data, avctx->sub_charenc);
|
|
|
|
av_packet_unref(&tmp);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
outpkt->size -= outl;
|
|
|
|
memset(outpkt->data + outpkt->size, 0, outl);
|
|
|
|
|
|
|
|
end:
|
|
|
|
if (cd != (iconv_t)-1)
|
|
|
|
iconv_close(cd);
|
|
|
|
return ret;
|
|
|
|
#else
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "requesting subtitles recoding without iconv");
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static int utf8_check(const uint8_t *str)
|
|
|
|
{
|
|
|
|
const uint8_t *byte;
|
|
|
|
uint32_t codepoint, min;
|
|
|
|
|
|
|
|
while (*str) {
|
|
|
|
byte = str;
|
|
|
|
GET_UTF8(codepoint, *(byte++), return 0;);
|
|
|
|
min = byte - str == 1 ? 0 : byte - str == 2 ? 0x80 :
|
|
|
|
1 << (5 * (byte - str) - 4);
|
|
|
|
if (codepoint < min || codepoint >= 0x110000 ||
|
|
|
|
codepoint == 0xFFFE /* BOM */ ||
|
|
|
|
codepoint >= 0xD800 && codepoint <= 0xDFFF /* surrogates */)
|
|
|
|
return 0;
|
|
|
|
str = byte;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if FF_API_ASS_TIMING
|
|
|
|
static void insert_ts(AVBPrint *buf, int ts)
|
|
|
|
{
|
|
|
|
if (ts == -1) {
|
|
|
|
av_bprintf(buf, "9:59:59.99,");
|
|
|
|
} else {
|
|
|
|
int h, m, s;
|
|
|
|
|
|
|
|
h = ts/360000; ts -= 360000*h;
|
|
|
|
m = ts/ 6000; ts -= 6000*m;
|
|
|
|
s = ts/ 100; ts -= 100*s;
|
|
|
|
av_bprintf(buf, "%d:%02d:%02d.%02d,", h, m, s, ts);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int convert_sub_to_old_ass_form(AVSubtitle *sub, const AVPacket *pkt, AVRational tb)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
AVBPrint buf;
|
|
|
|
|
|
|
|
av_bprint_init(&buf, 0, AV_BPRINT_SIZE_UNLIMITED);
|
|
|
|
|
|
|
|
for (i = 0; i < sub->num_rects; i++) {
|
|
|
|
char *final_dialog;
|
|
|
|
const char *dialog;
|
|
|
|
AVSubtitleRect *rect = sub->rects[i];
|
|
|
|
int ts_start, ts_duration = -1;
|
|
|
|
long int layer;
|
|
|
|
|
|
|
|
if (rect->type != SUBTITLE_ASS || !strncmp(rect->ass, "Dialogue: ", 10))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
av_bprint_clear(&buf);
|
|
|
|
|
|
|
|
/* skip ReadOrder */
|
|
|
|
dialog = strchr(rect->ass, ',');
|
|
|
|
if (!dialog)
|
|
|
|
continue;
|
|
|
|
dialog++;
|
|
|
|
|
|
|
|
/* extract Layer or Marked */
|
|
|
|
layer = strtol(dialog, (char**)&dialog, 10);
|
|
|
|
if (*dialog != ',')
|
|
|
|
continue;
|
|
|
|
dialog++;
|
|
|
|
|
|
|
|
/* rescale timing to ASS time base (ms) */
|
|
|
|
ts_start = av_rescale_q(pkt->pts, tb, av_make_q(1, 100));
|
|
|
|
if (pkt->duration != -1)
|
|
|
|
ts_duration = av_rescale_q(pkt->duration, tb, av_make_q(1, 100));
|
|
|
|
sub->end_display_time = FFMAX(sub->end_display_time, 10 * ts_duration);
|
|
|
|
|
|
|
|
/* construct ASS (standalone file form with timestamps) string */
|
|
|
|
av_bprintf(&buf, "Dialogue: %ld,", layer);
|
|
|
|
insert_ts(&buf, ts_start);
|
|
|
|
insert_ts(&buf, ts_duration == -1 ? -1 : ts_start + ts_duration);
|
|
|
|
av_bprintf(&buf, "%s\r\n", dialog);
|
|
|
|
|
|
|
|
final_dialog = av_strdup(buf.str);
|
|
|
|
if (!av_bprint_is_complete(&buf) || !final_dialog) {
|
|
|
|
av_freep(&final_dialog);
|
|
|
|
av_bprint_finalize(&buf, NULL);
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
av_freep(&rect->ass);
|
|
|
|
rect->ass = final_dialog;
|
|
|
|
}
|
|
|
|
|
|
|
|
av_bprint_finalize(&buf, NULL);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
int avcodec_decode_subtitle2(AVCodecContext *avctx, AVSubtitle *sub,
|
|
|
|
int *got_sub_ptr,
|
|
|
|
AVPacket *avpkt)
|
|
|
|
{
|
|
|
|
int i, ret = 0;
|
|
|
|
|
|
|
|
if (!avpkt->data && avpkt->size) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "invalid packet: NULL data, size != 0\n");
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
}
|
|
|
|
if (!avctx->codec)
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
if (avctx->codec->type != AVMEDIA_TYPE_SUBTITLE) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Invalid media type for subtitles\n");
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
*got_sub_ptr = 0;
|
|
|
|
get_subtitle_defaults(sub);
|
|
|
|
|
|
|
|
if ((avctx->codec->capabilities & AV_CODEC_CAP_DELAY) || avpkt->size) {
|
|
|
|
AVPacket pkt_recoded;
|
|
|
|
AVPacket tmp = *avpkt;
|
|
|
|
#if FF_API_MERGE_SD
|
|
|
|
FF_DISABLE_DEPRECATION_WARNINGS
|
|
|
|
int did_split = av_packet_split_side_data(&tmp);
|
|
|
|
//apply_param_change(avctx, &tmp);
|
|
|
|
|
|
|
|
if (did_split) {
|
|
|
|
/* FFMIN() prevents overflow in case the packet wasn't allocated with
|
|
|
|
* proper padding.
|
|
|
|
* If the side data is smaller than the buffer padding size, the
|
|
|
|
* remaining bytes should have already been filled with zeros by the
|
|
|
|
* original packet allocation anyway. */
|
|
|
|
memset(tmp.data + tmp.size, 0,
|
|
|
|
FFMIN(avpkt->size - tmp.size, AV_INPUT_BUFFER_PADDING_SIZE));
|
|
|
|
}
|
|
|
|
FF_ENABLE_DEPRECATION_WARNINGS
|
|
|
|
#endif
|
|
|
|
|
|
|
|
pkt_recoded = tmp;
|
|
|
|
ret = recode_subtitle(avctx, &pkt_recoded, &tmp);
|
|
|
|
if (ret < 0) {
|
|
|
|
*got_sub_ptr = 0;
|
|
|
|
} else {
|
|
|
|
ret = extract_packet_props(avctx->internal, &pkt_recoded);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (avctx->pkt_timebase.num && avpkt->pts != AV_NOPTS_VALUE)
|
|
|
|
sub->pts = av_rescale_q(avpkt->pts,
|
|
|
|
avctx->pkt_timebase, AV_TIME_BASE_Q);
|
|
|
|
ret = avctx->codec->decode(avctx, sub, got_sub_ptr, &pkt_recoded);
|
|
|
|
av_assert1((ret >= 0) >= !!*got_sub_ptr &&
|
|
|
|
!!*got_sub_ptr >= !!sub->num_rects);
|
|
|
|
|
|
|
|
#if FF_API_ASS_TIMING
|
|
|
|
if (avctx->sub_text_format == FF_SUB_TEXT_FMT_ASS_WITH_TIMINGS
|
|
|
|
&& *got_sub_ptr && sub->num_rects) {
|
|
|
|
const AVRational tb = avctx->pkt_timebase.num ? avctx->pkt_timebase
|
|
|
|
: avctx->time_base;
|
|
|
|
int err = convert_sub_to_old_ass_form(sub, avpkt, tb);
|
|
|
|
if (err < 0)
|
|
|
|
ret = err;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (sub->num_rects && !sub->end_display_time && avpkt->duration &&
|
|
|
|
avctx->pkt_timebase.num) {
|
|
|
|
AVRational ms = { 1, 1000 };
|
|
|
|
sub->end_display_time = av_rescale_q(avpkt->duration,
|
|
|
|
avctx->pkt_timebase, ms);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (avctx->codec_descriptor->props & AV_CODEC_PROP_BITMAP_SUB)
|
|
|
|
sub->format = 0;
|
|
|
|
else if (avctx->codec_descriptor->props & AV_CODEC_PROP_TEXT_SUB)
|
|
|
|
sub->format = 1;
|
|
|
|
|
|
|
|
for (i = 0; i < sub->num_rects; i++) {
|
|
|
|
if (sub->rects[i]->ass && !utf8_check(sub->rects[i]->ass)) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
|
|
"Invalid UTF-8 in decoded subtitles text; "
|
|
|
|
"maybe missing -sub_charenc option\n");
|
|
|
|
avsubtitle_free(sub);
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tmp.data != pkt_recoded.data) { // did we recode?
|
|
|
|
/* prevent from destroying side data from original packet */
|
|
|
|
pkt_recoded.side_data = NULL;
|
|
|
|
pkt_recoded.side_data_elems = 0;
|
|
|
|
|
|
|
|
av_packet_unref(&pkt_recoded);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if FF_API_MERGE_SD
|
|
|
|
if (did_split) {
|
|
|
|
av_packet_free_side_data(&tmp);
|
|
|
|
if(ret == tmp.size)
|
|
|
|
ret = avpkt->size;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (*got_sub_ptr)
|
|
|
|
avctx->frame_number++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int is_hwaccel_pix_fmt(enum AVPixelFormat pix_fmt)
|
|
|
|
{
|
|
|
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
|
|
|
|
return desc->flags & AV_PIX_FMT_FLAG_HWACCEL;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum AVPixelFormat avcodec_default_get_format(struct AVCodecContext *s, const enum AVPixelFormat *fmt)
|
|
|
|
{
|
|
|
|
while (*fmt != AV_PIX_FMT_NONE && is_hwaccel_pix_fmt(*fmt))
|
|
|
|
++fmt;
|
|
|
|
return fmt[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
static AVHWAccel *find_hwaccel(enum AVCodecID codec_id,
|
|
|
|
enum AVPixelFormat pix_fmt)
|
|
|
|
{
|
|
|
|
AVHWAccel *hwaccel = NULL;
|
|
|
|
|
|
|
|
while ((hwaccel = av_hwaccel_next(hwaccel)))
|
|
|
|
if (hwaccel->id == codec_id
|
|
|
|
&& hwaccel->pix_fmt == pix_fmt)
|
|
|
|
return hwaccel;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int setup_hwaccel(AVCodecContext *avctx,
|
|
|
|
const enum AVPixelFormat fmt,
|
|
|
|
const char *name)
|
|
|
|
{
|
|
|
|
AVHWAccel *hwa = find_hwaccel(avctx->codec_id, fmt);
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
if (!hwa) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR,
|
|
|
|
"Could not find an AVHWAccel for the pixel format: %s",
|
|
|
|
name);
|
|
|
|
return AVERROR(ENOENT);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hwa->capabilities & HWACCEL_CODEC_CAP_EXPERIMENTAL &&
|
|
|
|
avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "Ignoring experimental hwaccel: %s\n",
|
|
|
|
hwa->name);
|
|
|
|
return AVERROR_PATCHWELCOME;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hwa->priv_data_size) {
|
|
|
|
avctx->internal->hwaccel_priv_data = av_mallocz(hwa->priv_data_size);
|
|
|
|
if (!avctx->internal->hwaccel_priv_data)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (hwa->init) {
|
|
|
|
ret = hwa->init(avctx);
|
|
|
|
if (ret < 0) {
|
|
|
|
av_freep(&avctx->internal->hwaccel_priv_data);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
avctx->hwaccel = hwa;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
|
|
|
|
{
|
|
|
|
const AVPixFmtDescriptor *desc;
|
|
|
|
enum AVPixelFormat *choices;
|
|
|
|
enum AVPixelFormat ret;
|
|
|
|
unsigned n = 0;
|
|
|
|
|
|
|
|
while (fmt[n] != AV_PIX_FMT_NONE)
|
|
|
|
++n;
|
|
|
|
|
|
|
|
av_assert0(n >= 1);
|
|
|
|
avctx->sw_pix_fmt = fmt[n - 1];
|
|
|
|
av_assert2(!is_hwaccel_pix_fmt(avctx->sw_pix_fmt));
|
|
|
|
|
|
|
|
choices = av_malloc_array(n + 1, sizeof(*choices));
|
|
|
|
if (!choices)
|
|
|
|
return AV_PIX_FMT_NONE;
|
|
|
|
|
|
|
|
memcpy(choices, fmt, (n + 1) * sizeof(*choices));
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
if (avctx->hwaccel && avctx->hwaccel->uninit)
|
|
|
|
avctx->hwaccel->uninit(avctx);
|
|
|
|
av_freep(&avctx->internal->hwaccel_priv_data);
|
|
|
|
avctx->hwaccel = NULL;
|
|
|
|
|
|
|
|
av_buffer_unref(&avctx->hw_frames_ctx);
|
|
|
|
|
|
|
|
ret = avctx->get_format(avctx, choices);
|
|
|
|
|
|
|
|
desc = av_pix_fmt_desc_get(ret);
|
|
|
|
if (!desc) {
|
|
|
|
ret = AV_PIX_FMT_NONE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!(desc->flags & AV_PIX_FMT_FLAG_HWACCEL))
|
|
|
|
break;
|
|
|
|
#if FF_API_CAP_VDPAU
|
|
|
|
if (avctx->codec->capabilities&AV_CODEC_CAP_HWACCEL_VDPAU)
|
|
|
|
break;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (avctx->hw_frames_ctx) {
|
|
|
|
AVHWFramesContext *hw_frames_ctx = (AVHWFramesContext*)avctx->hw_frames_ctx->data;
|
|
|
|
if (hw_frames_ctx->format != ret) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Format returned from get_buffer() "
|
|
|
|
"does not match the format of provided AVHWFramesContext\n");
|
|
|
|
ret = AV_PIX_FMT_NONE;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!setup_hwaccel(avctx, ret, desc->name))
|
|
|
|
break;
|
|
|
|
|
|
|
|
/* Remove failed hwaccel from choices */
|
|
|
|
for (n = 0; choices[n] != ret; n++)
|
|
|
|
av_assert0(choices[n] != AV_PIX_FMT_NONE);
|
|
|
|
|
|
|
|
do
|
|
|
|
choices[n] = choices[n + 1];
|
|
|
|
while (choices[n++] != AV_PIX_FMT_NONE);
|
|
|
|
}
|
|
|
|
|
|
|
|
av_freep(&choices);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int update_frame_pool(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
FramePool *pool = avctx->internal->pool;
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
switch (avctx->codec_type) {
|
|
|
|
case AVMEDIA_TYPE_VIDEO: {
|
|
|
|
uint8_t *data[4];
|
|
|
|
int linesize[4];
|
|
|
|
int size[4] = { 0 };
|
|
|
|
int w = frame->width;
|
|
|
|
int h = frame->height;
|
|
|
|
int tmpsize, unaligned;
|
|
|
|
|
|
|
|
if (pool->format == frame->format &&
|
|
|
|
pool->width == frame->width && pool->height == frame->height)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
avcodec_align_dimensions2(avctx, &w, &h, pool->stride_align);
|
|
|
|
|
|
|
|
do {
|
|
|
|
// NOTE: do not align linesizes individually, this breaks e.g. assumptions
|
|
|
|
// that linesize[0] == 2*linesize[1] in the MPEG-encoder for 4:2:2
|
|
|
|
ret = av_image_fill_linesizes(linesize, avctx->pix_fmt, w);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
// increase alignment of w for next try (rhs gives the lowest bit set in w)
|
|
|
|
w += w & ~(w - 1);
|
|
|
|
|
|
|
|
unaligned = 0;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
unaligned |= linesize[i] % pool->stride_align[i];
|
|
|
|
} while (unaligned);
|
|
|
|
|
|
|
|
tmpsize = av_image_fill_pointers(data, avctx->pix_fmt, h,
|
|
|
|
NULL, linesize);
|
|
|
|
if (tmpsize < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
for (i = 0; i < 3 && data[i + 1]; i++)
|
|
|
|
size[i] = data[i + 1] - data[i];
|
|
|
|
size[i] = tmpsize - (data[i] - data[0]);
|
|
|
|
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
|
|
av_buffer_pool_uninit(&pool->pools[i]);
|
|
|
|
pool->linesize[i] = linesize[i];
|
|
|
|
if (size[i]) {
|
|
|
|
pool->pools[i] = av_buffer_pool_init(size[i] + 16 + STRIDE_ALIGN - 1,
|
|
|
|
CONFIG_MEMORY_POISONING ?
|
|
|
|
NULL :
|
|
|
|
av_buffer_allocz);
|
|
|
|
if (!pool->pools[i]) {
|
|
|
|
ret = AVERROR(ENOMEM);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pool->format = frame->format;
|
|
|
|
pool->width = frame->width;
|
|
|
|
pool->height = frame->height;
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case AVMEDIA_TYPE_AUDIO: {
|
|
|
|
int ch = frame->channels; //av_get_channel_layout_nb_channels(frame->channel_layout);
|
|
|
|
int planar = av_sample_fmt_is_planar(frame->format);
|
|
|
|
int planes = planar ? ch : 1;
|
|
|
|
|
|
|
|
if (pool->format == frame->format && pool->planes == planes &&
|
|
|
|
pool->channels == ch && frame->nb_samples == pool->samples)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
av_buffer_pool_uninit(&pool->pools[0]);
|
|
|
|
ret = av_samples_get_buffer_size(&pool->linesize[0], ch,
|
|
|
|
frame->nb_samples, frame->format, 0);
|
|
|
|
if (ret < 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
pool->pools[0] = av_buffer_pool_init(pool->linesize[0], NULL);
|
|
|
|
if (!pool->pools[0]) {
|
|
|
|
ret = AVERROR(ENOMEM);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
pool->format = frame->format;
|
|
|
|
pool->planes = planes;
|
|
|
|
pool->channels = ch;
|
|
|
|
pool->samples = frame->nb_samples;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: av_assert0(0);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
for (i = 0; i < 4; i++)
|
|
|
|
av_buffer_pool_uninit(&pool->pools[i]);
|
|
|
|
pool->format = -1;
|
|
|
|
pool->planes = pool->channels = pool->samples = 0;
|
|
|
|
pool->width = pool->height = 0;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int audio_get_buffer(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
FramePool *pool = avctx->internal->pool;
|
|
|
|
int planes = pool->planes;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
frame->linesize[0] = pool->linesize[0];
|
|
|
|
|
|
|
|
if (planes > AV_NUM_DATA_POINTERS) {
|
|
|
|
frame->extended_data = av_mallocz_array(planes, sizeof(*frame->extended_data));
|
|
|
|
frame->nb_extended_buf = planes - AV_NUM_DATA_POINTERS;
|
|
|
|
frame->extended_buf = av_mallocz_array(frame->nb_extended_buf,
|
|
|
|
sizeof(*frame->extended_buf));
|
|
|
|
if (!frame->extended_data || !frame->extended_buf) {
|
|
|
|
av_freep(&frame->extended_data);
|
|
|
|
av_freep(&frame->extended_buf);
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
frame->extended_data = frame->data;
|
|
|
|
av_assert0(frame->nb_extended_buf == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < FFMIN(planes, AV_NUM_DATA_POINTERS); i++) {
|
|
|
|
frame->buf[i] = av_buffer_pool_get(pool->pools[0]);
|
|
|
|
if (!frame->buf[i])
|
|
|
|
goto fail;
|
|
|
|
frame->extended_data[i] = frame->data[i] = frame->buf[i]->data;
|
|
|
|
}
|
|
|
|
for (i = 0; i < frame->nb_extended_buf; i++) {
|
|
|
|
frame->extended_buf[i] = av_buffer_pool_get(pool->pools[0]);
|
|
|
|
if (!frame->extended_buf[i])
|
|
|
|
goto fail;
|
|
|
|
frame->extended_data[i + AV_NUM_DATA_POINTERS] = frame->extended_buf[i]->data;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (avctx->debug & FF_DEBUG_BUFFERS)
|
|
|
|
av_log(avctx, AV_LOG_DEBUG, "default_get_buffer called on frame %p", frame);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
av_frame_unref(frame);
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int video_get_buffer(AVCodecContext *s, AVFrame *pic)
|
|
|
|
{
|
|
|
|
FramePool *pool = s->internal->pool;
|
|
|
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pic->format);
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if (pic->data[0] || pic->data[1] || pic->data[2] || pic->data[3]) {
|
|
|
|
av_log(s, AV_LOG_ERROR, "pic->data[*]!=NULL in avcodec_default_get_buffer\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!desc) {
|
|
|
|
av_log(s, AV_LOG_ERROR,
|
|
|
|
"Unable to get pixel format descriptor for format %s\n",
|
|
|
|
av_get_pix_fmt_name(pic->format));
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
memset(pic->data, 0, sizeof(pic->data));
|
|
|
|
pic->extended_data = pic->data;
|
|
|
|
|
|
|
|
for (i = 0; i < 4 && pool->pools[i]; i++) {
|
|
|
|
pic->linesize[i] = pool->linesize[i];
|
|
|
|
|
|
|
|
pic->buf[i] = av_buffer_pool_get(pool->pools[i]);
|
|
|
|
if (!pic->buf[i])
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
pic->data[i] = pic->buf[i]->data;
|
|
|
|
}
|
|
|
|
for (; i < AV_NUM_DATA_POINTERS; i++) {
|
|
|
|
pic->data[i] = NULL;
|
|
|
|
pic->linesize[i] = 0;
|
|
|
|
}
|
|
|
|
if (desc->flags & AV_PIX_FMT_FLAG_PAL ||
|
|
|
|
desc->flags & AV_PIX_FMT_FLAG_PSEUDOPAL)
|
|
|
|
avpriv_set_systematic_pal2((uint32_t *)pic->data[1], pic->format);
|
|
|
|
|
|
|
|
if (s->debug & FF_DEBUG_BUFFERS)
|
|
|
|
av_log(s, AV_LOG_DEBUG, "default_get_buffer called on pic %p\n", pic);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
|
|
av_frame_unref(pic);
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
int avcodec_default_get_buffer2(AVCodecContext *avctx, AVFrame *frame, int flags)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (avctx->hw_frames_ctx)
|
|
|
|
return av_hwframe_get_buffer(avctx->hw_frames_ctx, frame, 0);
|
|
|
|
|
|
|
|
if ((ret = update_frame_pool(avctx, frame)) < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
switch (avctx->codec_type) {
|
|
|
|
case AVMEDIA_TYPE_VIDEO:
|
|
|
|
return video_get_buffer(avctx, frame);
|
|
|
|
case AVMEDIA_TYPE_AUDIO:
|
|
|
|
return audio_get_buffer(avctx, frame);
|
|
|
|
default:
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int add_metadata_from_side_data(const AVPacket *avpkt, AVFrame *frame)
|
|
|
|
{
|
|
|
|
int size;
|
|
|
|
const uint8_t *side_metadata;
|
|
|
|
|
|
|
|
AVDictionary **frame_md = &frame->metadata;
|
|
|
|
|
|
|
|
side_metadata = av_packet_get_side_data(avpkt,
|
|
|
|
AV_PKT_DATA_STRINGS_METADATA, &size);
|
|
|
|
return av_packet_unpack_dictionary(side_metadata, size, frame_md);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_init_buffer_info(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
const AVPacket *pkt = avctx->internal->last_pkt_props;
|
|
|
|
int i;
|
|
|
|
static const struct {
|
|
|
|
enum AVPacketSideDataType packet;
|
|
|
|
enum AVFrameSideDataType frame;
|
|
|
|
} sd[] = {
|
|
|
|
{ AV_PKT_DATA_REPLAYGAIN , AV_FRAME_DATA_REPLAYGAIN },
|
|
|
|
{ AV_PKT_DATA_DISPLAYMATRIX, AV_FRAME_DATA_DISPLAYMATRIX },
|
|
|
|
{ AV_PKT_DATA_SPHERICAL, AV_FRAME_DATA_SPHERICAL },
|
|
|
|
{ AV_PKT_DATA_STEREO3D, AV_FRAME_DATA_STEREO3D },
|
|
|
|
{ AV_PKT_DATA_AUDIO_SERVICE_TYPE, AV_FRAME_DATA_AUDIO_SERVICE_TYPE },
|
|
|
|
{ AV_PKT_DATA_MASTERING_DISPLAY_METADATA, AV_FRAME_DATA_MASTERING_DISPLAY_METADATA },
|
|
|
|
{ AV_PKT_DATA_CONTENT_LIGHT_LEVEL, AV_FRAME_DATA_CONTENT_LIGHT_LEVEL },
|
|
|
|
};
|
|
|
|
|
|
|
|
if (pkt) {
|
|
|
|
frame->pts = pkt->pts;
|
|
|
|
#if FF_API_PKT_PTS
|
|
|
|
FF_DISABLE_DEPRECATION_WARNINGS
|
|
|
|
frame->pkt_pts = pkt->pts;
|
|
|
|
FF_ENABLE_DEPRECATION_WARNINGS
|
|
|
|
#endif
|
|
|
|
frame->pkt_pos = pkt->pos;
|
|
|
|
frame->pkt_duration = pkt->duration;
|
|
|
|
frame->pkt_size = pkt->size;
|
|
|
|
|
|
|
|
for (i = 0; i < FF_ARRAY_ELEMS(sd); i++) {
|
|
|
|
int size;
|
|
|
|
uint8_t *packet_sd = av_packet_get_side_data(pkt, sd[i].packet, &size);
|
|
|
|
if (packet_sd) {
|
|
|
|
AVFrameSideData *frame_sd = av_frame_new_side_data(frame,
|
|
|
|
sd[i].frame,
|
|
|
|
size);
|
|
|
|
if (!frame_sd)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
memcpy(frame_sd->data, packet_sd, size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
add_metadata_from_side_data(pkt, frame);
|
|
|
|
|
|
|
|
if (pkt->flags & AV_PKT_FLAG_DISCARD) {
|
|
|
|
frame->flags |= AV_FRAME_FLAG_DISCARD;
|
|
|
|
} else {
|
|
|
|
frame->flags = (frame->flags & ~AV_FRAME_FLAG_DISCARD);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
frame->reordered_opaque = avctx->reordered_opaque;
|
|
|
|
|
|
|
|
if (frame->color_primaries == AVCOL_PRI_UNSPECIFIED)
|
|
|
|
frame->color_primaries = avctx->color_primaries;
|
|
|
|
if (frame->color_trc == AVCOL_TRC_UNSPECIFIED)
|
|
|
|
frame->color_trc = avctx->color_trc;
|
|
|
|
if (frame->colorspace == AVCOL_SPC_UNSPECIFIED)
|
|
|
|
frame->colorspace = avctx->colorspace;
|
|
|
|
if (frame->color_range == AVCOL_RANGE_UNSPECIFIED)
|
|
|
|
frame->color_range = avctx->color_range;
|
|
|
|
if (frame->chroma_location == AVCHROMA_LOC_UNSPECIFIED)
|
|
|
|
frame->chroma_location = avctx->chroma_sample_location;
|
|
|
|
|
|
|
|
switch (avctx->codec->type) {
|
|
|
|
case AVMEDIA_TYPE_VIDEO:
|
|
|
|
frame->format = avctx->pix_fmt;
|
|
|
|
if (!frame->sample_aspect_ratio.num)
|
|
|
|
frame->sample_aspect_ratio = avctx->sample_aspect_ratio;
|
|
|
|
|
|
|
|
if (frame->width && frame->height &&
|
|
|
|
av_image_check_sar(frame->width, frame->height,
|
|
|
|
frame->sample_aspect_ratio) < 0) {
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "ignoring invalid SAR: %u/%u\n",
|
|
|
|
frame->sample_aspect_ratio.num,
|
|
|
|
frame->sample_aspect_ratio.den);
|
|
|
|
frame->sample_aspect_ratio = (AVRational){ 0, 1 };
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
case AVMEDIA_TYPE_AUDIO:
|
|
|
|
if (!frame->sample_rate)
|
|
|
|
frame->sample_rate = avctx->sample_rate;
|
|
|
|
if (frame->format < 0)
|
|
|
|
frame->format = avctx->sample_fmt;
|
|
|
|
if (!frame->channel_layout) {
|
|
|
|
if (avctx->channel_layout) {
|
|
|
|
if (av_get_channel_layout_nb_channels(avctx->channel_layout) !=
|
|
|
|
avctx->channels) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Inconsistent channel "
|
|
|
|
"configuration.\n");
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
frame->channel_layout = avctx->channel_layout;
|
|
|
|
} else {
|
|
|
|
if (avctx->channels > FF_SANE_NB_CHANNELS) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Too many channels: %d.\n",
|
|
|
|
avctx->channels);
|
|
|
|
return AVERROR(ENOSYS);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
frame->channels = avctx->channels;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_decode_frame_props(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
return ff_init_buffer_info(avctx, frame);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void validate_avframe_allocation(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
if (avctx->codec_type == AVMEDIA_TYPE_VIDEO) {
|
|
|
|
int i;
|
|
|
|
int num_planes = av_pix_fmt_count_planes(frame->format);
|
|
|
|
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
|
|
|
|
int flags = desc ? desc->flags : 0;
|
|
|
|
if (num_planes == 1 && (flags & AV_PIX_FMT_FLAG_PAL))
|
|
|
|
num_planes = 2;
|
|
|
|
for (i = 0; i < num_planes; i++) {
|
|
|
|
av_assert0(frame->data[i]);
|
|
|
|
}
|
|
|
|
// For now do not enforce anything for palette of pseudopal formats
|
|
|
|
if (num_planes == 1 && (flags & AV_PIX_FMT_FLAG_PSEUDOPAL))
|
|
|
|
num_planes = 2;
|
|
|
|
// For formats without data like hwaccel allow unused pointers to be non-NULL.
|
|
|
|
for (i = num_planes; num_planes > 0 && i < FF_ARRAY_ELEMS(frame->data); i++) {
|
|
|
|
if (frame->data[i])
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Buffer returned by get_buffer2() did not zero unused plane pointers\n");
|
|
|
|
frame->data[i] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int get_buffer_internal(AVCodecContext *avctx, AVFrame *frame, int flags)
|
|
|
|
{
|
|
|
|
const AVHWAccel *hwaccel = avctx->hwaccel;
|
|
|
|
int override_dimensions = 1;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (avctx->codec_type == AVMEDIA_TYPE_VIDEO) {
|
|
|
|
if ((ret = av_image_check_size2(avctx->width, avctx->height, avctx->max_pixels, AV_PIX_FMT_NONE, 0, avctx)) < 0 || avctx->pix_fmt<0) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "video_get_buffer: image parameters invalid\n");
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (frame->width <= 0 || frame->height <= 0) {
|
|
|
|
frame->width = FFMAX(avctx->width, AV_CEIL_RSHIFT(avctx->coded_width, avctx->lowres));
|
|
|
|
frame->height = FFMAX(avctx->height, AV_CEIL_RSHIFT(avctx->coded_height, avctx->lowres));
|
|
|
|
override_dimensions = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (frame->data[0] || frame->data[1] || frame->data[2] || frame->data[3]) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "pic->data[*]!=NULL in get_buffer_internal\n");
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ret = ff_decode_frame_props(avctx, frame);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
if (hwaccel) {
|
|
|
|
if (hwaccel->alloc_frame) {
|
|
|
|
ret = hwaccel->alloc_frame(avctx, frame);
|
|
|
|
goto end;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
avctx->sw_pix_fmt = avctx->pix_fmt;
|
|
|
|
|
|
|
|
ret = avctx->get_buffer2(avctx, frame, flags);
|
|
|
|
if (ret >= 0)
|
|
|
|
validate_avframe_allocation(avctx, frame);
|
|
|
|
|
|
|
|
end:
|
|
|
|
if (avctx->codec_type == AVMEDIA_TYPE_VIDEO && !override_dimensions) {
|
|
|
|
frame->width = avctx->width;
|
|
|
|
frame->height = avctx->height;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
|
|
|
|
{
|
|
|
|
int ret = get_buffer_internal(avctx, frame, flags);
|
|
|
|
if (ret < 0) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
|
|
|
frame->width = frame->height = 0;
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int reget_buffer_internal(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
AVFrame *tmp;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
av_assert0(avctx->codec_type == AVMEDIA_TYPE_VIDEO);
|
|
|
|
|
|
|
|
if (frame->data[0] && (frame->width != avctx->width || frame->height != avctx->height || frame->format != avctx->pix_fmt)) {
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "Picture changed from size:%dx%d fmt:%s to size:%dx%d fmt:%s in reget buffer()\n",
|
|
|
|
frame->width, frame->height, av_get_pix_fmt_name(frame->format), avctx->width, avctx->height, av_get_pix_fmt_name(avctx->pix_fmt));
|
|
|
|
av_frame_unref(frame);
|
|
|
|
}
|
|
|
|
|
|
|
|
ff_init_buffer_info(avctx, frame);
|
|
|
|
|
|
|
|
if (!frame->data[0])
|
|
|
|
return ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF);
|
|
|
|
|
|
|
|
if (av_frame_is_writable(frame))
|
|
|
|
return ff_decode_frame_props(avctx, frame);
|
|
|
|
|
|
|
|
tmp = av_frame_alloc();
|
|
|
|
if (!tmp)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
av_frame_move_ref(tmp, frame);
|
|
|
|
|
|
|
|
ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF);
|
|
|
|
if (ret < 0) {
|
|
|
|
av_frame_free(&tmp);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
av_frame_copy(frame, tmp);
|
|
|
|
av_frame_free(&tmp);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int ff_reget_buffer(AVCodecContext *avctx, AVFrame *frame)
|
|
|
|
{
|
|
|
|
int ret = reget_buffer_internal(avctx, frame);
|
|
|
|
if (ret < 0)
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void avcodec_flush_buffers(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
avctx->internal->draining = 0;
|
|
|
|
avctx->internal->draining_done = 0;
|
|
|
|
avctx->internal->nb_draining_errors = 0;
|
|
|
|
av_frame_unref(avctx->internal->buffer_frame);
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
av_frame_unref(avctx->internal->compat_decode_frame);
|
|
|
|
av_packet_unref(avctx->internal->buffer_pkt);
|
|
|
|
avctx->internal->buffer_pkt_valid = 0;
|
|
|
|
|
decode: restructure the core decoding code
Currently, the new decoding API is pretty much just a wrapper around the
old deprecated one. This is problematic, since it interferes with making
full use of the flexibility added by the new API. The old API should
also be removed at some future point.
Reorganize the code so that the new send_packet/receive_frame functions
call the actual decoding directly and change the old deprecated
avcodec_decode_* functions into wrappers around the new API.
The new internal API for decoders is now changing as well. Before this
commit, it mirrors the public API, so the decoders need to implement
send_packet() and receive_frame() callbacks. This turns out to require
awkward constructs in both the decoders and the generic code. After this
commit, the decoders only implement the receive_frame() callback and
call a new internal function, ff_decode_get_packet() to obtain input
data, in the same manner to how the bitstream filters now work.
avcodec will now always make a reference to the input packet, which means
that non-refcounted input packets will be copied. Keeping the previous
behaviour, where this copy could sometimes be avoided, would make the
code significantly more complex and fragile for only dubious gains,
since packets are typically small and everyone who cares about
performance should use refcounted packets anyway.
8 years ago
|
|
|
av_packet_unref(avctx->internal->ds.in_pkt);
|
|
|
|
|
|
|
|
if (HAVE_THREADS && avctx->active_thread_type & FF_THREAD_FRAME)
|
|
|
|
ff_thread_flush(avctx);
|
|
|
|
else if (avctx->codec->flush)
|
|
|
|
avctx->codec->flush(avctx);
|
|
|
|
|
|
|
|
avctx->pts_correction_last_pts =
|
|
|
|
avctx->pts_correction_last_dts = INT64_MIN;
|
|
|
|
|
|
|
|
ff_decode_bsfs_uninit(avctx);
|
|
|
|
|
|
|
|
if (!avctx->refcounted_frames)
|
|
|
|
av_frame_unref(avctx->internal->to_free);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ff_decode_bsfs_uninit(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
DecodeFilterContext *s = &avctx->internal->filter;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < s->nb_bsfs; i++)
|
|
|
|
av_bsf_free(&s->bsfs[i]);
|
|
|
|
av_freep(&s->bsfs);
|
|
|
|
s->nb_bsfs = 0;
|
|
|
|
}
|