|
|
|
/*
|
|
|
|
* H.261 decoder
|
|
|
|
* Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
|
|
|
|
* Copyright (c) 2004 Maarten Daniels
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* H.261 decoder.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "libavutil/avassert.h"
|
|
|
|
#include "libavutil/thread.h"
|
|
|
|
#include "avcodec.h"
|
|
|
|
#include "codec_internal.h"
|
|
|
|
#include "decode.h"
|
|
|
|
#include "mpeg_er.h"
|
|
|
|
#include "mpegutils.h"
|
|
|
|
#include "mpegvideo.h"
|
|
|
|
#include "mpegvideodec.h"
|
|
|
|
#include "h261.h"
|
|
|
|
|
|
|
|
#define H261_MBA_VLC_BITS 8
|
|
|
|
#define H261_MTYPE_VLC_BITS 6
|
|
|
|
#define H261_MV_VLC_BITS 7
|
|
|
|
#define H261_CBP_VLC_BITS 9
|
|
|
|
#define TCOEFF_VLC_BITS 9
|
|
|
|
#define MBA_STUFFING 33
|
|
|
|
#define MBA_STARTCODE 34
|
|
|
|
|
|
|
|
static VLCElem h261_mba_vlc[540];
|
|
|
|
static VLCElem h261_mtype_vlc[80];
|
|
|
|
static VLCElem h261_mv_vlc[144];
|
|
|
|
static VLCElem h261_cbp_vlc[512];
|
|
|
|
|
|
|
|
typedef struct H261DecContext {
|
|
|
|
MpegEncContext s;
|
|
|
|
|
|
|
|
H261Context common;
|
|
|
|
|
|
|
|
int current_mba;
|
|
|
|
int mba_diff;
|
|
|
|
int current_mv_x;
|
|
|
|
int current_mv_y;
|
|
|
|
int gob_number;
|
|
|
|
int gob_start_code_skipped; // 1 if gob start code is already read before gob header is read
|
|
|
|
} H261DecContext;
|
|
|
|
|
|
|
|
static av_cold void h261_decode_init_static(void)
|
|
|
|
{
|
|
|
|
VLC_INIT_STATIC_TABLE(h261_mba_vlc, H261_MBA_VLC_BITS, 35,
|
|
|
|
ff_h261_mba_bits, 1, 1,
|
|
|
|
ff_h261_mba_code, 1, 1, 0);
|
|
|
|
VLC_INIT_STATIC_SPARSE_TABLE(h261_mtype_vlc, H261_MTYPE_VLC_BITS, 10,
|
|
|
|
ff_h261_mtype_bits, 1, 1,
|
|
|
|
ff_h261_mtype_code, 1, 1,
|
|
|
|
ff_h261_mtype_map, 2, 2, 0);
|
|
|
|
VLC_INIT_STATIC_TABLE(h261_mv_vlc, H261_MV_VLC_BITS, 17,
|
|
|
|
&ff_h261_mv_tab[0][1], 2, 1,
|
|
|
|
&ff_h261_mv_tab[0][0], 2, 1, 0);
|
|
|
|
VLC_INIT_STATIC_TABLE(h261_cbp_vlc, H261_CBP_VLC_BITS, 63,
|
|
|
|
&ff_h261_cbp_tab[0][1], 2, 1,
|
|
|
|
&ff_h261_cbp_tab[0][0], 2, 1, 0);
|
|
|
|
INIT_FIRST_VLC_RL(ff_h261_rl_tcoeff, 552);
|
|
|
|
}
|
|
|
|
|
|
|
|
static av_cold int h261_decode_init(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
static AVOnce init_static_once = AV_ONCE_INIT;
|
|
|
|
H261DecContext *const h = avctx->priv_data;
|
|
|
|
MpegEncContext *const s = &h->s;
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
int ret;
|
|
|
|
|
|
|
|
avctx->framerate = (AVRational) { 30000, 1001 };
|
|
|
|
|
|
|
|
s->private_ctx = &h->common;
|
|
|
|
// set defaults
|
avcodec/mpegpicture: Make MPVPicture refcounted
Up until now, an initialized MpegEncContext had an array of
MPVPictures (way more than were ever needed) and the MPVPicture*
contained in the MPVWorkPictures as well as the input_picture
and reordered_input_picture arrays (for the encoder) pointed
into this array. Several of the pointers could point to the
same slot and because there was no reference counting involved,
one had to check for aliasing before unreferencing.
Furthermore, given that these pointers were not ownership pointers
the pointers were often simply reset without unreferencing
the slot (happened e.g. for the RV30 and RV40 decoders) or
there were moved without resetting the src pointer (happened
for the encoders where the entries in the input_picture
and reordered_input_picture arrays were not reset).
Instead actually releasing these pictures was performed by looping
over the whole array and checking which one of the entries needed
to be kept. Given that the array had way too many slots (36),
this meant that more than 30 MPVPictures have been unnecessarily
unreferenced in every ff_mpv_frame_start(); something similar
happened for the encoder.
This commit changes this by making the MPVPictures refcounted
via the RefStruct API. The MPVPictures itself are part of a pool
so that this does not entail constant allocations; instead,
the amount of allocations actually goes down, because the
earlier code used such a large array of MPVPictures (36 entries) and
allocated an AVFrame for every one of these on every
ff_mpv_common_init(). In fact, the pool is only freed when closing
the codec, so that reinitializations don't lead to new allocations
(this avoids having to sync the pool in update_thread_context).
Making MPVPictures refcounted also has another key benefit:
It makes it possible to directly share them across threads
(when using frame-threaded decoding), eliminating ugly code
with underlying av_frame_ref()'s; sharing these pictures
can't fail any more.
The pool is allocated in ff_mpv_decode_init() for decoders,
which therefore can fail now. This and the fact that the pool
is not unreferenced in ff_mpv_common_end() also necessitated
to mark several mpegvideo-decoders with the FF_CODEC_CAP_INIT_CLEANUP
flag.
*: This also means that there is no good reason any more for
ff_mpv_common_frame_size_change() to exist.
Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
|
|
|
ret = ff_mpv_decode_init(s, avctx);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
s->out_format = FMT_H261;
|
|
|
|
s->low_delay = 1;
|
|
|
|
avctx->pix_fmt = AV_PIX_FMT_YUV420P;
|
|
|
|
|
|
|
|
ff_thread_once(&init_static_once, h261_decode_init_static);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void h261_init_dest(MpegEncContext *s)
|
|
|
|
{
|
|
|
|
const unsigned block_size = 8 >> s->avctx->lowres;
|
|
|
|
ff_init_block_index(s);
|
|
|
|
s->dest[0] += 2 * block_size;
|
|
|
|
s->dest[1] += block_size;
|
|
|
|
s->dest[2] += block_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Decode the group of blocks header or slice header.
|
|
|
|
* @return <0 if an error occurred
|
|
|
|
*/
|
|
|
|
static int h261_decode_gob_header(H261DecContext *h)
|
|
|
|
{
|
|
|
|
unsigned int val;
|
|
|
|
MpegEncContext *const s = &h->s;
|
|
|
|
|
|
|
|
if (!h->gob_start_code_skipped) {
|
|
|
|
/* Check for GOB Start Code */
|
|
|
|
val = show_bits(&s->gb, 15);
|
|
|
|
if (val)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
/* We have a GBSC */
|
|
|
|
skip_bits(&s->gb, 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
h->gob_start_code_skipped = 0;
|
|
|
|
|
|
|
|
h->gob_number = get_bits(&s->gb, 4); /* GN */
|
|
|
|
s->qscale = get_bits(&s->gb, 5); /* GQUANT */
|
|
|
|
|
|
|
|
/* Check if gob_number is valid */
|
|
|
|
if (s->mb_height == 18) { // CIF
|
|
|
|
if ((h->gob_number <= 0) || (h->gob_number > 12))
|
|
|
|
return -1;
|
|
|
|
} else { // QCIF
|
|
|
|
if ((h->gob_number != 1) && (h->gob_number != 3) &&
|
|
|
|
(h->gob_number != 5))
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* GEI */
|
|
|
|
if (skip_1stop_8data_bits(&s->gb) < 0)
|
|
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
|
|
|
|
if (s->qscale == 0) {
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "qscale has forbidden 0 value\n");
|
|
|
|
if (s->avctx->err_recognition & (AV_EF_BITSTREAM | AV_EF_COMPLIANT))
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* For the first transmitted macroblock in a GOB, MBA is the absolute
|
|
|
|
* address. For subsequent macroblocks, MBA is the difference between
|
|
|
|
* the absolute addresses of the macroblock and the last transmitted
|
|
|
|
* macroblock. */
|
|
|
|
h->current_mba = 0;
|
|
|
|
h->mba_diff = 0;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Decode skipped macroblocks.
|
|
|
|
* @return 0
|
|
|
|
*/
|
|
|
|
static int h261_decode_mb_skipped(H261DecContext *h, int mba1, int mba2)
|
|
|
|
{
|
|
|
|
MpegEncContext *const s = &h->s;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
s->mb_intra = 0;
|
|
|
|
|
|
|
|
for (i = mba1; i < mba2; i++) {
|
|
|
|
int j, xy;
|
|
|
|
|
|
|
|
s->mb_x = ((h->gob_number - 1) % 2) * 11 + i % 11;
|
|
|
|
s->mb_y = ((h->gob_number - 1) / 2) * 3 + i / 11;
|
|
|
|
xy = s->mb_x + s->mb_y * s->mb_stride;
|
|
|
|
h261_init_dest(s);
|
|
|
|
|
|
|
|
for (j = 0; j < 6; j++)
|
|
|
|
s->block_last_index[j] = -1;
|
|
|
|
|
|
|
|
s->mv_dir = MV_DIR_FORWARD;
|
|
|
|
s->mv_type = MV_TYPE_16X16;
|
|
|
|
s->cur_pic.mb_type[xy] = MB_TYPE_SKIP | MB_TYPE_16x16 | MB_TYPE_FORWARD_MV;
|
|
|
|
s->mv[0][0][0] = 0;
|
|
|
|
s->mv[0][0][1] = 0;
|
|
|
|
s->mb_skipped = 1;
|
|
|
|
h->common.mtype &= ~MB_TYPE_H261_FIL;
|
|
|
|
|
|
|
|
if (s->cur_pic.motion_val[0]) {
|
|
|
|
int b_stride = 2*s->mb_width + 1;
|
|
|
|
int b_xy = 2 * s->mb_x + (2 * s->mb_y) * b_stride;
|
|
|
|
s->cur_pic.motion_val[0][b_xy][0] = s->mv[0][0][0];
|
|
|
|
s->cur_pic.motion_val[0][b_xy][1] = s->mv[0][0][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
ff_mpv_reconstruct_mb(s, s->block);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int decode_mv_component(GetBitContext *gb, int v)
|
|
|
|
{
|
|
|
|
int mv_diff = get_vlc2(gb, h261_mv_vlc, H261_MV_VLC_BITS, 2);
|
|
|
|
|
|
|
|
/* check if mv_diff is valid */
|
|
|
|
if (mv_diff < 0)
|
|
|
|
return v;
|
|
|
|
|
|
|
|
if (mv_diff && get_bits1(gb))
|
|
|
|
mv_diff = -mv_diff;
|
|
|
|
|
|
|
|
v += mv_diff;
|
|
|
|
if (v <= -16)
|
|
|
|
v += 32;
|
|
|
|
else if (v >= 16)
|
|
|
|
v -= 32;
|
|
|
|
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Decode a macroblock.
|
|
|
|
* @return <0 if an error occurred
|
|
|
|
*/
|
|
|
|
static int h261_decode_block(H261DecContext *h, int16_t *block, int n, int coded)
|
|
|
|
{
|
|
|
|
MpegEncContext *const s = &h->s;
|
|
|
|
int level, i, j, run;
|
|
|
|
const RLTable *rl = &ff_h261_rl_tcoeff;
|
|
|
|
const uint8_t *scan_table;
|
|
|
|
const int qmul = s->qscale << 1, qadd = (s->qscale - 1) | 1;
|
|
|
|
|
|
|
|
/* For the variable length encoding there are two code tables, one being
|
|
|
|
* used for the first transmitted LEVEL in INTER, INTER + MC and
|
|
|
|
* INTER + MC + FIL blocks, the second for all other LEVELs except the
|
|
|
|
* first one in INTRA blocks which is fixed length coded with 8 bits.
|
|
|
|
* NOTE: The two code tables only differ in one VLC so we handle that
|
|
|
|
* manually. */
|
|
|
|
scan_table = s->intra_scantable.permutated;
|
|
|
|
if (s->mb_intra) {
|
|
|
|
/* DC coef */
|
|
|
|
level = get_bits(&s->gb, 8);
|
|
|
|
// 0 (00000000b) and -128 (10000000b) are FORBIDDEN
|
|
|
|
if ((level & 0x7F) == 0) {
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "illegal dc %d at %d %d\n",
|
|
|
|
level, s->mb_x, s->mb_y);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* The code 1000 0000 is not used, the reconstruction level of 1024
|
|
|
|
* being coded as 1111 1111. */
|
|
|
|
if (level == 255)
|
|
|
|
level = 128;
|
|
|
|
block[0] = level * s->y_dc_scale;
|
|
|
|
i = 1;
|
|
|
|
} else if (coded) {
|
|
|
|
// Run Level Code
|
|
|
|
// EOB Not possible for first level when cbp is available (that's why the table is different)
|
|
|
|
// 0 1 1s
|
|
|
|
// * * 0*
|
|
|
|
int check = show_bits(&s->gb, 2);
|
|
|
|
i = 0;
|
|
|
|
if (check & 0x2) {
|
|
|
|
skip_bits(&s->gb, 2);
|
|
|
|
block[0] = qmul + qadd;
|
|
|
|
block[0] *= (check & 0x1) ? -1 : 1;
|
|
|
|
i = 1;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
i = 0;
|
|
|
|
}
|
|
|
|
if (!coded) {
|
|
|
|
s->block_last_index[n] = i - 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
OPEN_READER(re, &s->gb);
|
|
|
|
i--; // offset by -1 to allow direct indexing of scan_table
|
|
|
|
for (;;) {
|
|
|
|
UPDATE_CACHE(re, &s->gb);
|
|
|
|
GET_RL_VLC(level, run, re, &s->gb, rl->rl_vlc[0], TCOEFF_VLC_BITS, 2, 0);
|
|
|
|
if (run == 66) {
|
|
|
|
if (level) {
|
|
|
|
CLOSE_READER(re, &s->gb);
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "illegal ac vlc code at %dx%d\n",
|
|
|
|
s->mb_x, s->mb_y);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* escape */
|
|
|
|
/* The remaining combinations of (run, level) are encoded with a
|
|
|
|
* 20-bit word consisting of 6 bits escape, 6 bits run and 8 bits
|
|
|
|
* level. */
|
|
|
|
run = SHOW_UBITS(re, &s->gb, 6) + 1;
|
|
|
|
SKIP_CACHE(re, &s->gb, 6);
|
|
|
|
level = SHOW_SBITS(re, &s->gb, 8);
|
|
|
|
if (level > 0)
|
|
|
|
level = level * qmul + qadd;
|
|
|
|
else if (level < 0)
|
|
|
|
level = level * qmul - qadd;
|
|
|
|
SKIP_COUNTER(re, &s->gb, 6 + 8);
|
|
|
|
} else if (level == 0) {
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
level = level * qmul + qadd;
|
|
|
|
if (SHOW_UBITS(re, &s->gb, 1))
|
|
|
|
level = -level;
|
|
|
|
SKIP_COUNTER(re, &s->gb, 1);
|
|
|
|
}
|
|
|
|
i += run;
|
|
|
|
if (i >= 64) {
|
|
|
|
CLOSE_READER(re, &s->gb);
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "run overflow at %dx%d\n",
|
|
|
|
s->mb_x, s->mb_y);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
j = scan_table[i];
|
|
|
|
block[j] = level;
|
|
|
|
}
|
|
|
|
CLOSE_READER(re, &s->gb);
|
|
|
|
}
|
|
|
|
s->block_last_index[n] = i;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int h261_decode_mb(H261DecContext *h)
|
|
|
|
{
|
|
|
|
MpegEncContext *const s = &h->s;
|
|
|
|
H261Context *const com = &h->common;
|
|
|
|
int i, cbp, xy;
|
|
|
|
|
|
|
|
cbp = 63;
|
|
|
|
// Read mba
|
|
|
|
do {
|
|
|
|
h->mba_diff = get_vlc2(&s->gb, h261_mba_vlc,
|
|
|
|
H261_MBA_VLC_BITS, 2);
|
|
|
|
|
|
|
|
/* Check for slice end */
|
|
|
|
/* NOTE: GOB can be empty (no MB data) or exist only of MBA_stuffing */
|
|
|
|
if (h->mba_diff == MBA_STARTCODE) { // start code
|
|
|
|
h->gob_start_code_skipped = 1;
|
|
|
|
return SLICE_END;
|
|
|
|
}
|
|
|
|
} while (h->mba_diff == MBA_STUFFING); // stuffing
|
|
|
|
|
|
|
|
if (h->mba_diff < 0) {
|
|
|
|
if (get_bits_left(&s->gb) <= 7)
|
|
|
|
return SLICE_END;
|
|
|
|
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "illegal mba at %d %d\n", s->mb_x, s->mb_y);
|
|
|
|
return SLICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
h->mba_diff += 1;
|
|
|
|
h->current_mba += h->mba_diff;
|
|
|
|
|
|
|
|
if (h->current_mba > MBA_STUFFING)
|
|
|
|
return SLICE_ERROR;
|
|
|
|
|
|
|
|
s->mb_x = ((h->gob_number - 1) % 2) * 11 + ((h->current_mba - 1) % 11);
|
|
|
|
s->mb_y = ((h->gob_number - 1) / 2) * 3 + ((h->current_mba - 1) / 11);
|
|
|
|
xy = s->mb_x + s->mb_y * s->mb_stride;
|
|
|
|
h261_init_dest(s);
|
|
|
|
|
|
|
|
// Read mtype
|
|
|
|
com->mtype = get_vlc2(&s->gb, h261_mtype_vlc, H261_MTYPE_VLC_BITS, 2);
|
|
|
|
if (com->mtype < 0) {
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "Invalid mtype index\n");
|
|
|
|
return SLICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read mquant
|
|
|
|
if (IS_QUANT(com->mtype))
|
|
|
|
ff_set_qscale(s, get_bits(&s->gb, 5));
|
|
|
|
|
|
|
|
s->mb_intra = IS_INTRA4x4(com->mtype);
|
|
|
|
|
|
|
|
// Read mv
|
|
|
|
if (IS_16X16(com->mtype)) {
|
|
|
|
/* Motion vector data is included for all MC macroblocks. MVD is
|
|
|
|
* obtained from the macroblock vector by subtracting the vector
|
|
|
|
* of the preceding macroblock. For this calculation the vector
|
|
|
|
* of the preceding macroblock is regarded as zero in the
|
|
|
|
* following three situations:
|
|
|
|
* 1) evaluating MVD for macroblocks 1, 12 and 23;
|
|
|
|
* 2) evaluating MVD for macroblocks in which MBA does not represent a difference of 1;
|
|
|
|
* 3) MTYPE of the previous macroblock was not MC. */
|
|
|
|
if ((h->current_mba == 1) || (h->current_mba == 12) ||
|
|
|
|
(h->current_mba == 23) || (h->mba_diff != 1)) {
|
|
|
|
h->current_mv_x = 0;
|
|
|
|
h->current_mv_y = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
h->current_mv_x = decode_mv_component(&s->gb, h->current_mv_x);
|
|
|
|
h->current_mv_y = decode_mv_component(&s->gb, h->current_mv_y);
|
|
|
|
} else {
|
|
|
|
h->current_mv_x = 0;
|
|
|
|
h->current_mv_y = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read cbp
|
|
|
|
if (HAS_CBP(com->mtype))
|
|
|
|
cbp = get_vlc2(&s->gb, h261_cbp_vlc, H261_CBP_VLC_BITS, 1) + 1;
|
|
|
|
|
|
|
|
if (s->mb_intra) {
|
|
|
|
s->cur_pic.mb_type[xy] = MB_TYPE_INTRA;
|
|
|
|
goto intra;
|
|
|
|
}
|
|
|
|
|
|
|
|
//set motion vectors
|
|
|
|
s->mv_dir = MV_DIR_FORWARD;
|
|
|
|
s->mv_type = MV_TYPE_16X16;
|
|
|
|
s->cur_pic.mb_type[xy] = MB_TYPE_16x16 | MB_TYPE_FORWARD_MV;
|
|
|
|
s->mv[0][0][0] = h->current_mv_x * 2; // gets divided by 2 in motion compensation
|
|
|
|
s->mv[0][0][1] = h->current_mv_y * 2;
|
|
|
|
|
|
|
|
if (s->cur_pic.motion_val[0]) {
|
|
|
|
int b_stride = 2*s->mb_width + 1;
|
|
|
|
int b_xy = 2 * s->mb_x + (2 * s->mb_y) * b_stride;
|
|
|
|
s->cur_pic.motion_val[0][b_xy][0] = s->mv[0][0][0];
|
|
|
|
s->cur_pic.motion_val[0][b_xy][1] = s->mv[0][0][1];
|
|
|
|
}
|
|
|
|
|
|
|
|
intra:
|
|
|
|
/* decode each block */
|
|
|
|
if (s->mb_intra || HAS_CBP(com->mtype)) {
|
|
|
|
s->bdsp.clear_blocks(s->block[0]);
|
|
|
|
for (i = 0; i < 6; i++) {
|
|
|
|
if (h261_decode_block(h, s->block[i], i, cbp & 32) < 0)
|
|
|
|
return SLICE_ERROR;
|
|
|
|
cbp += cbp;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < 6; i++)
|
|
|
|
s->block_last_index[i] = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
ff_mpv_reconstruct_mb(s, s->block);
|
|
|
|
|
|
|
|
return SLICE_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Decode the H.261 picture header.
|
|
|
|
* @return <0 if no startcode found
|
|
|
|
*/
|
|
|
|
static int h261_decode_picture_header(H261DecContext *h)
|
|
|
|
{
|
|
|
|
MpegEncContext *const s = &h->s;
|
|
|
|
int format, i;
|
|
|
|
uint32_t startcode = 0;
|
|
|
|
|
|
|
|
for (i = get_bits_left(&s->gb); i > 24; i -= 1) {
|
|
|
|
startcode = ((startcode << 1) | get_bits(&s->gb, 1)) & 0x000FFFFF;
|
|
|
|
|
|
|
|
if (startcode == 0x10)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (startcode != 0x10) {
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "Bad picture start code\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* temporal reference */
|
|
|
|
skip_bits(&s->gb, 5); /* picture timestamp */
|
|
|
|
|
|
|
|
/* PTYPE starts here */
|
|
|
|
skip_bits1(&s->gb); /* split screen off */
|
|
|
|
skip_bits1(&s->gb); /* camera off */
|
|
|
|
skip_bits1(&s->gb); /* freeze picture release off */
|
|
|
|
|
|
|
|
format = get_bits1(&s->gb);
|
|
|
|
|
|
|
|
// only 2 formats possible
|
|
|
|
if (format == 0) { // QCIF
|
|
|
|
s->width = 176;
|
|
|
|
s->height = 144;
|
|
|
|
} else { // CIF
|
|
|
|
s->width = 352;
|
|
|
|
s->height = 288;
|
|
|
|
}
|
|
|
|
|
|
|
|
skip_bits1(&s->gb); /* still image mode off */
|
|
|
|
skip_bits1(&s->gb); /* Reserved */
|
|
|
|
|
|
|
|
/* PEI */
|
|
|
|
if (skip_1stop_8data_bits(&s->gb) < 0)
|
|
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
|
|
|
|
/* H.261 has no I-frames, but if we pass AV_PICTURE_TYPE_I for the first
|
|
|
|
* frame, the codec crashes if it does not contain all I-blocks
|
|
|
|
* (e.g. when a packet is lost). */
|
|
|
|
s->pict_type = AV_PICTURE_TYPE_P;
|
|
|
|
|
|
|
|
h->gob_number = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int h261_decode_gob(H261DecContext *h)
|
|
|
|
{
|
|
|
|
MpegEncContext *const s = &h->s;
|
|
|
|
|
|
|
|
ff_set_qscale(s, s->qscale);
|
|
|
|
|
|
|
|
/* decode mb's */
|
|
|
|
while (h->current_mba <= MBA_STUFFING) {
|
|
|
|
int ret;
|
|
|
|
/* DCT & quantize */
|
|
|
|
ret = h261_decode_mb(h);
|
|
|
|
if (ret < 0) {
|
|
|
|
if (ret == SLICE_END) {
|
|
|
|
h261_decode_mb_skipped(h, h->current_mba, 33);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "Error at MB: %d\n",
|
|
|
|
s->mb_x + s->mb_y * s->mb_stride);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
h261_decode_mb_skipped(h,
|
|
|
|
h->current_mba - h->mba_diff,
|
|
|
|
h->current_mba - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* returns the number of bytes consumed for building the current frame
|
|
|
|
*/
|
|
|
|
static int get_consumed_bytes(MpegEncContext *s, int buf_size)
|
|
|
|
{
|
|
|
|
int pos = get_bits_count(&s->gb) >> 3;
|
|
|
|
if (pos == 0)
|
|
|
|
pos = 1; // avoid infinite loops (i doubt that is needed but ...)
|
|
|
|
if (pos + 10 > buf_size)
|
|
|
|
pos = buf_size; // oops ;)
|
|
|
|
|
|
|
|
return pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int h261_decode_frame(AVCodecContext *avctx, AVFrame *pict,
|
|
|
|
int *got_frame, AVPacket *avpkt)
|
|
|
|
{
|
|
|
|
H261DecContext *const h = avctx->priv_data;
|
|
|
|
const uint8_t *buf = avpkt->data;
|
|
|
|
int buf_size = avpkt->size;
|
|
|
|
MpegEncContext *s = &h->s;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ff_dlog(avctx, "*****frame %"PRId64" size=%d\n", avctx->frame_num, buf_size);
|
|
|
|
ff_dlog(avctx, "bytes=%x %x %x %x\n", buf[0], buf[1], buf[2], buf[3]);
|
|
|
|
|
|
|
|
h->gob_start_code_skipped = 0;
|
|
|
|
|
|
|
|
init_get_bits(&s->gb, buf, buf_size * 8);
|
|
|
|
|
|
|
|
ret = h261_decode_picture_header(h);
|
|
|
|
|
|
|
|
/* skip if the header was thrashed */
|
|
|
|
if (ret < 0) {
|
|
|
|
av_log(s->avctx, AV_LOG_ERROR, "header damaged\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s->width != avctx->coded_width || s->height != avctx->coded_height) {
|
|
|
|
ff_mpv_common_end(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!s->context_initialized) {
|
|
|
|
if ((ret = ff_mpv_common_init(s)) < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = ff_set_dimensions(avctx, s->width, s->height);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == AV_PICTURE_TYPE_B) ||
|
|
|
|
(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != AV_PICTURE_TYPE_I) ||
|
|
|
|
avctx->skip_frame >= AVDISCARD_ALL)
|
|
|
|
return buf_size;
|
|
|
|
|
|
|
|
if (ff_mpv_frame_start(s, avctx) < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
ff_mpeg_er_frame_start(s);
|
|
|
|
|
|
|
|
/* decode each macroblock */
|
|
|
|
s->mb_x = 0;
|
|
|
|
s->mb_y = 0;
|
|
|
|
|
|
|
|
while (h->gob_number < (s->mb_height == 18 ? 12 : 5)) {
|
|
|
|
if (h261_decode_gob_header(h) < 0)
|
|
|
|
break;
|
|
|
|
h261_decode_gob(h);
|
|
|
|
}
|
|
|
|
ff_mpv_frame_end(s);
|
|
|
|
|
|
|
|
av_assert0(s->pict_type == s->cur_pic.ptr->f->pict_type);
|
|
|
|
|
|
|
|
if ((ret = av_frame_ref(pict, s->cur_pic.ptr->f)) < 0)
|
|
|
|
return ret;
|
|
|
|
ff_print_debug_info(s, s->cur_pic.ptr, pict);
|
|
|
|
|
|
|
|
*got_frame = 1;
|
|
|
|
|
|
|
|
return get_consumed_bytes(s, buf_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
const FFCodec ff_h261_decoder = {
|
|
|
|
.p.name = "h261",
|
|
|
|
CODEC_LONG_NAME("H.261"),
|
|
|
|
.p.type = AVMEDIA_TYPE_VIDEO,
|
|
|
|
.p.id = AV_CODEC_ID_H261,
|
|
|
|
.priv_data_size = sizeof(H261DecContext),
|
|
|
|
.init = h261_decode_init,
|
|
|
|
FF_CODEC_DECODE_CB(h261_decode_frame),
|
|
|
|
.close = ff_mpv_decode_close,
|
|
|
|
.p.capabilities = AV_CODEC_CAP_DR1,
|
|
|
|
.p.max_lowres = 3,
|
|
|
|
};
|