You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

149 lines
5.3 KiB

/*
* Audio Interleaving functions
*
* Copyright (c) 2009 Baptiste Coudurier <baptiste dot coudurier at gmail dot com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/fifo.h"
#include "libavutil/mathematics.h"
#include "avformat.h"
#include "audiointerleave.h"
#include "internal.h"
void ff_audio_interleave_close(AVFormatContext *s)
{
int i;
for (i = 0; i < s->nb_streams; i++) {
AVStream *st = s->streams[i];
AudioInterleaveContext *aic = st->priv_data;
if (aic && st->codecpar->codec_type == AVMEDIA_TYPE_AUDIO)
av_fifo_freep(&aic->fifo);
}
}
int ff_audio_interleave_init(AVFormatContext *s,
const int samples_per_frame,
AVRational time_base)
{
int i;
if (!time_base.num) {
av_log(s, AV_LOG_ERROR, "timebase not set for audio interleave\n");
return AVERROR(EINVAL);
}
for (i = 0; i < s->nb_streams; i++) {
AVStream *st = s->streams[i];
AudioInterleaveContext *aic = st->priv_data;
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
11 years ago
if (st->codecpar->codec_type == AVMEDIA_TYPE_AUDIO) {
int max_samples = samples_per_frame ? samples_per_frame :
av_rescale_rnd(st->codecpar->sample_rate, time_base.num, time_base.den, AV_ROUND_UP);
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
11 years ago
aic->sample_size = (st->codecpar->channels *
av_get_bits_per_sample(st->codecpar->codec_id)) / 8;
if (!aic->sample_size) {
av_log(s, AV_LOG_ERROR, "could not compute sample size\n");
return AVERROR(EINVAL);
}
aic->samples_per_frame = samples_per_frame;
aic->time_base = time_base;
if (!(aic->fifo = av_fifo_alloc_array(100, max_samples)))
return AVERROR(ENOMEM);
aic->fifo_size = 100 * max_samples;
}
}
return 0;
}
static int interleave_new_audio_packet(AVFormatContext *s, AVPacket *pkt,
int stream_index, int flush)
{
AVStream *st = s->streams[stream_index];
AudioInterleaveContext *aic = st->priv_data;
int ret;
int nb_samples = aic->samples_per_frame ? aic->samples_per_frame :
(av_rescale_q(aic->n + 1, av_make_q(st->codecpar->sample_rate, 1), av_inv_q(aic->time_base)) - aic->nb_samples);
int frame_size = nb_samples * aic->sample_size;
int size = FFMIN(av_fifo_size(aic->fifo), frame_size);
if (!size || (!flush && size == av_fifo_size(aic->fifo)))
return 0;
ret = av_new_packet(pkt, frame_size);
if (ret < 0)
return ret;
av_fifo_generic_read(aic->fifo, pkt->data, size, NULL);
if (size < pkt->size)
memset(pkt->data + size, 0, pkt->size - size);
pkt->dts = pkt->pts = aic->dts;
pkt->duration = av_rescale_q(nb_samples, st->time_base, aic->time_base);
pkt->stream_index = stream_index;
aic->dts += pkt->duration;
aic->nb_samples += nb_samples;
aic->n++;
return pkt->size;
}
int ff_audio_rechunk_interleave(AVFormatContext *s, AVPacket *out, AVPacket *pkt, int flush,
int (*get_packet)(AVFormatContext *, AVPacket *, AVPacket *, int),
int (*compare_ts)(AVFormatContext *, const AVPacket *, const AVPacket *))
{
int i, ret;
if (pkt) {
AVStream *st = s->streams[pkt->stream_index];
AudioInterleaveContext *aic = st->priv_data;
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
11 years ago
if (st->codecpar->codec_type == AVMEDIA_TYPE_AUDIO) {
unsigned new_size = av_fifo_size(aic->fifo) + pkt->size;
if (new_size > aic->fifo_size) {
if (av_fifo_realloc2(aic->fifo, new_size) < 0)
return AVERROR(ENOMEM);
aic->fifo_size = new_size;
}
av_fifo_generic_write(aic->fifo, pkt->data, pkt->size, NULL);
} else {
// rewrite pts and dts to be decoded time line position
pkt->pts = pkt->dts = aic->dts;
aic->dts += pkt->duration;
if ((ret = ff_interleave_add_packet(s, pkt, compare_ts)) < 0)
return ret;
}
pkt = NULL;
}
for (i = 0; i < s->nb_streams; i++) {
AVStream *st = s->streams[i];
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
11 years ago
if (st->codecpar->codec_type == AVMEDIA_TYPE_AUDIO) {
AVPacket new_pkt;
while ((ret = interleave_new_audio_packet(s, &new_pkt, i, flush)) > 0) {
if ((ret = ff_interleave_add_packet(s, &new_pkt, compare_ts)) < 0)
return ret;
}
if (ret < 0)
return ret;
}
}
return get_packet(s, out, NULL, flush);
}