|
|
|
/*
|
|
|
|
* Copyright (c) 2012 Andrew D'Addesio
|
|
|
|
* Copyright (c) 2013-2014 Mozilla Corporation
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
|
|
|
|
#include "opus_celt.h"
|
|
|
|
#include "opus_pvq.h"
|
|
|
|
#include "opustab.h"
|
|
|
|
|
|
|
|
void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
|
|
|
|
{
|
|
|
|
float lowband_scratch[8 * 22];
|
|
|
|
float norm1[2 * 8 * 100];
|
|
|
|
float *norm2 = norm1 + 8 * 100;
|
|
|
|
|
|
|
|
int totalbits = (f->framebits << 3) - f->anticollapse_needed;
|
|
|
|
|
|
|
|
int update_lowband = 1;
|
|
|
|
int lowband_offset = 0;
|
|
|
|
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
|
|
uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
|
|
|
|
int band_offset = ff_celt_freq_bands[i] << f->size;
|
|
|
|
int band_size = ff_celt_freq_range[i] << f->size;
|
|
|
|
float *X = f->block[0].coeffs + band_offset;
|
|
|
|
float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
|
|
|
|
float *norm_loc1, *norm_loc2;
|
|
|
|
|
|
|
|
int consumed = opus_rc_tell_frac(rc);
|
|
|
|
int effective_lowband = -1;
|
|
|
|
int b = 0;
|
|
|
|
|
|
|
|
/* Compute how many bits we want to allocate to this band */
|
|
|
|
if (i != f->start_band)
|
|
|
|
f->remaining -= consumed;
|
|
|
|
f->remaining2 = totalbits - consumed - 1;
|
|
|
|
if (i <= f->coded_bands - 1) {
|
|
|
|
int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
|
|
|
|
b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
|
|
|
|
i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
|
|
|
|
lowband_offset = i;
|
|
|
|
|
|
|
|
if (i == f->start_band + 1) {
|
|
|
|
/* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
|
|
|
|
the second to ensure the second band never has to use the LCG. */
|
|
|
|
int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
|
|
|
|
|
|
|
|
memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
|
|
|
|
|
|
|
|
if (f->channels == 2)
|
|
|
|
memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're
|
|
|
|
going to be folding from. */
|
|
|
|
if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
|
|
|
|
f->blocks > 1 || f->tf_change[i] < 0)) {
|
|
|
|
int foldstart, foldend;
|
|
|
|
|
|
|
|
/* This ensures we never repeat spectral content within one band */
|
|
|
|
effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
|
|
|
|
ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
|
|
|
|
foldstart = lowband_offset;
|
|
|
|
while (ff_celt_freq_bands[--foldstart] > effective_lowband);
|
|
|
|
foldend = lowband_offset - 1;
|
|
|
|
while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
|
|
|
|
|
|
|
|
cm[0] = cm[1] = 0;
|
|
|
|
for (j = foldstart; j < foldend; j++) {
|
|
|
|
cm[0] |= f->block[0].collapse_masks[j];
|
|
|
|
cm[1] |= f->block[f->channels - 1].collapse_masks[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (f->dual_stereo && i == f->intensity_stereo) {
|
|
|
|
/* Switch off dual stereo to do intensity */
|
|
|
|
f->dual_stereo = 0;
|
|
|
|
for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
|
|
|
|
norm1[j] = (norm1[j] + norm2[j]) / 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
|
|
|
|
norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
|
|
|
|
|
|
|
|
if (f->dual_stereo) {
|
|
|
|
cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
|
|
|
|
f->blocks, norm_loc1, f->size,
|
|
|
|
norm1 + band_offset, 0, 1.0f,
|
|
|
|
lowband_scratch, cm[0]);
|
|
|
|
|
|
|
|
cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
|
|
|
|
f->blocks, norm_loc2, f->size,
|
|
|
|
norm2 + band_offset, 0, 1.0f,
|
|
|
|
lowband_scratch, cm[1]);
|
|
|
|
} else {
|
|
|
|
cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, Y, band_size, b >> 0,
|
|
|
|
f->blocks, norm_loc1, f->size,
|
|
|
|
norm1 + band_offset, 0, 1.0f,
|
|
|
|
lowband_scratch, cm[0] | cm[1]);
|
|
|
|
cm[1] = cm[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
f->block[0].collapse_masks[i] = (uint8_t)cm[0];
|
|
|
|
f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
|
|
|
|
f->remaining += f->pulses[i] + consumed;
|
|
|
|
|
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth */
|
|
|
|
update_lowband = (b > band_size << 3);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
|
|
|
|
|
|
|
|
void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
|
|
|
|
{
|
|
|
|
int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
|
|
|
|
int skip_startband = f->start_band;
|
|
|
|
int skip_bit = 0;
|
|
|
|
int intensitystereo_bit = 0;
|
|
|
|
int dualstereo_bit = 0;
|
|
|
|
int dynalloc = 6;
|
|
|
|
int extrabits = 0;
|
|
|
|
|
|
|
|
int boost[CELT_MAX_BANDS] = { 0 };
|
|
|
|
int trim_offset[CELT_MAX_BANDS];
|
|
|
|
int threshold[CELT_MAX_BANDS];
|
|
|
|
int bits1[CELT_MAX_BANDS];
|
|
|
|
int bits2[CELT_MAX_BANDS];
|
|
|
|
|
|
|
|
/* Spread */
|
|
|
|
if (opus_rc_tell(rc) + 4 <= f->framebits) {
|
|
|
|
if (encode)
|
|
|
|
ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
|
|
|
|
else
|
|
|
|
f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
|
|
|
|
} else {
|
|
|
|
f->spread = CELT_SPREAD_NORMAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Initialize static allocation caps */
|
|
|
|
for (i = 0; i < CELT_MAX_BANDS; i++)
|
|
|
|
f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
|
|
|
|
|
|
|
|
/* Band boosts */
|
|
|
|
tbits_8ths = f->framebits << 3;
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
|
|
int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
|
|
|
|
int b_dynalloc = dynalloc;
|
|
|
|
int boost_amount = f->alloc_boost[i];
|
|
|
|
quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
|
|
|
|
|
|
|
|
while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
|
|
|
|
int is_boost;
|
|
|
|
if (encode) {
|
|
|
|
is_boost = boost_amount--;
|
|
|
|
ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
|
|
|
|
} else {
|
|
|
|
is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!is_boost)
|
|
|
|
break;
|
|
|
|
|
|
|
|
boost[i] += quanta;
|
|
|
|
tbits_8ths -= quanta;
|
|
|
|
|
|
|
|
b_dynalloc = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (boost[i])
|
|
|
|
dynalloc = FFMAX(dynalloc - 1, 2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocation trim */
|
|
|
|
if (!encode)
|
|
|
|
f->alloc_trim = 5;
|
|
|
|
if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
|
|
|
|
if (encode)
|
|
|
|
ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
|
|
|
|
else
|
|
|
|
f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
|
|
|
|
|
|
|
|
/* Anti-collapse bit reservation */
|
|
|
|
tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
|
|
|
|
f->anticollapse_needed = 0;
|
|
|
|
if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
|
|
|
|
f->anticollapse_needed = 1 << 3;
|
|
|
|
tbits_8ths -= f->anticollapse_needed;
|
|
|
|
|
|
|
|
/* Band skip bit reservation */
|
|
|
|
if (tbits_8ths >= 1 << 3)
|
|
|
|
skip_bit = 1 << 3;
|
|
|
|
tbits_8ths -= skip_bit;
|
|
|
|
|
|
|
|
/* Intensity/dual stereo bit reservation */
|
|
|
|
if (f->channels == 2) {
|
|
|
|
intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
|
|
|
|
if (intensitystereo_bit <= tbits_8ths) {
|
|
|
|
tbits_8ths -= intensitystereo_bit;
|
|
|
|
if (tbits_8ths >= 1 << 3) {
|
|
|
|
dualstereo_bit = 1 << 3;
|
|
|
|
tbits_8ths -= 1 << 3;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
intensitystereo_bit = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Trim offsets */
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
|
|
int trim = f->alloc_trim - 5 - f->size;
|
|
|
|
int band = ff_celt_freq_range[i] * (f->end_band - i - 1);
|
|
|
|
int duration = f->size + 3;
|
|
|
|
int scale = duration + f->channels - 1;
|
|
|
|
|
|
|
|
/* PVQ minimum allocation threshold, below this value the band is
|
|
|
|
* skipped */
|
|
|
|
threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
|
|
|
|
f->channels << 3);
|
|
|
|
|
|
|
|
trim_offset[i] = trim * (band << scale) >> 6;
|
|
|
|
|
|
|
|
if (ff_celt_freq_range[i] << f->size == 1)
|
|
|
|
trim_offset[i] -= f->channels << 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Bisection */
|
|
|
|
low = 1;
|
|
|
|
high = CELT_VECTORS - 1;
|
|
|
|
while (low <= high) {
|
|
|
|
int center = (low + high) >> 1;
|
|
|
|
done = total = 0;
|
|
|
|
|
|
|
|
for (i = f->end_band - 1; i >= f->start_band; i--) {
|
|
|
|
bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
|
|
|
|
|
|
|
|
if (bandbits)
|
|
|
|
bandbits = FFMAX(bandbits + trim_offset[i], 0);
|
|
|
|
bandbits += boost[i];
|
|
|
|
|
|
|
|
if (bandbits >= threshold[i] || done) {
|
|
|
|
done = 1;
|
|
|
|
total += FFMIN(bandbits, f->caps[i]);
|
|
|
|
} else if (bandbits >= f->channels << 3) {
|
|
|
|
total += f->channels << 3;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (total > tbits_8ths)
|
|
|
|
high = center - 1;
|
|
|
|
else
|
|
|
|
low = center + 1;
|
|
|
|
}
|
|
|
|
high = low--;
|
|
|
|
|
|
|
|
/* Bisection */
|
|
|
|
for (i = f->start_band; i < f->end_band; i++) {
|
|
|
|
bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
|
|
|
|
bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
|
|
|
|
NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
|
|
|
|
|
|
|
|
if (bits1[i])
|
|
|
|
bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
|
|
|
|
if (bits2[i])
|
|
|
|
bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
|
|
|
|
|
|
|
|
if (low)
|
|
|
|
bits1[i] += boost[i];
|
|
|
|
bits2[i] += boost[i];
|
|
|
|
|
|
|
|
if (boost[i])
|
|
|
|
skip_startband = i;
|
|
|
|
bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Bisection */
|
|
|
|
low = 0;
|
|
|
|
high = 1 << CELT_ALLOC_STEPS;
|
|
|
|
for (i = 0; i < CELT_ALLOC_STEPS; i++) {
|
|
|
|
int center = (low + high) >> 1;
|
|
|
|
done = total = 0;
|
|
|
|
|
|
|
|
for (j = f->end_band - 1; j >= f->start_band; j--) {
|
|
|
|
bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
|
|
|
|
|
|
|
|
if (bandbits >= threshold[j] || done) {
|
|
|
|
done = 1;
|
|
|
|
total += FFMIN(bandbits, f->caps[j]);
|
|
|
|
} else if (bandbits >= f->channels << 3)
|
|
|
|
total += f->channels << 3;
|
|
|
|
}
|
|
|
|
if (total > tbits_8ths)
|
|
|
|
high = center;
|
|
|
|
else
|
|
|
|
low = center;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Bisection */
|
|
|
|
done = total = 0;
|
|
|
|
for (i = f->end_band - 1; i >= f->start_band; i--) {
|
|
|
|
bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
|
|
|
|
|
|
|
|
if (bandbits >= threshold[i] || done)
|
|
|
|
done = 1;
|
|
|
|
else
|
|
|
|
bandbits = (bandbits >= f->channels << 3) ?
|
|
|
|
f->channels << 3 : 0;
|
|
|
|
|
|
|
|
bandbits = FFMIN(bandbits, f->caps[i]);
|
|
|
|
f->pulses[i] = bandbits;
|
|
|
|
total += bandbits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Band skipping */
|
|
|
|
for (f->coded_bands = f->end_band; ; f->coded_bands--) {
|
|
|
|
int allocation;
|
|
|
|
j = f->coded_bands - 1;
|
|
|
|
|
|
|
|
if (j == skip_startband) {
|
|
|
|
/* all remaining bands are not skipped */
|
|
|
|
tbits_8ths += skip_bit;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* determine the number of bits available for coding "do not skip" markers */
|
|
|
|
remaining = tbits_8ths - total;
|
|
|
|
bandbits = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
|
|
|
|
remaining -= bandbits * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
|
|
|
|
allocation = f->pulses[j] + bandbits * ff_celt_freq_range[j];
|
|
|
|
allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
|
|
|
|
|
|
|
|
/* a "do not skip" marker is only coded if the allocation is
|
|
|
|
* above the chosen threshold */
|
|
|
|
if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
|
|
|
|
int do_not_skip;
|
|
|
|
if (encode) {
|
|
|
|
do_not_skip = f->coded_bands <= f->skip_band_floor;
|
|
|
|
ff_opus_rc_enc_log(rc, do_not_skip, 1);
|
|
|
|
} else {
|
|
|
|
do_not_skip = ff_opus_rc_dec_log(rc, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (do_not_skip)
|
|
|
|
break;
|
|
|
|
|
|
|
|
total += 1 << 3;
|
|
|
|
allocation -= 1 << 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* the band is skipped, so reclaim its bits */
|
|
|
|
total -= f->pulses[j];
|
|
|
|
if (intensitystereo_bit) {
|
|
|
|
total -= intensitystereo_bit;
|
|
|
|
intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
|
|
|
|
total += intensitystereo_bit;
|
|
|
|
}
|
|
|
|
|
|
|
|
total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* IS start band */
|
|
|
|
if (encode) {
|
|
|
|
if (intensitystereo_bit) {
|
|
|
|
f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
|
|
|
|
ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
f->intensity_stereo = f->dual_stereo = 0;
|
|
|
|
if (intensitystereo_bit)
|
|
|
|
f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* DS flag */
|
|
|
|
if (f->intensity_stereo <= f->start_band)
|
|
|
|
tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
|
|
|
|
else if (dualstereo_bit)
|
|
|
|
if (encode)
|
|
|
|
ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
|
|
|
|
else
|
|
|
|
f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
|
|
|
|
|
|
|
|
/* Supply the remaining bits in this frame to lower bands */
|
|
|
|
remaining = tbits_8ths - total;
|
|
|
|
bandbits = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
|
|
|
|
remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
|
|
|
|
for (i = f->start_band; i < f->coded_bands; i++) {
|
|
|
|
const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
|
|
|
|
f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
|
|
|
|
remaining -= bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finally determine the allocation */
|
|
|
|
for (i = f->start_band; i < f->coded_bands; i++) {
|
|
|
|
int N = ff_celt_freq_range[i] << f->size;
|
|
|
|
int prev_extra = extrabits;
|
|
|
|
f->pulses[i] += extrabits;
|
|
|
|
|
|
|
|
if (N > 1) {
|
|
|
|
int dof; /* degrees of freedom */
|
|
|
|
int temp; /* dof * channels * log(dof) */
|
|
|
|
int fine_bits;
|
|
|
|
int max_bits;
|
|
|
|
int offset; /* fine energy quantization offset, i.e.
|
|
|
|
* extra bits assigned over the standard
|
|
|
|
* totalbits/dof */
|
|
|
|
|
|
|
|
extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
|
|
|
|
f->pulses[i] -= extrabits;
|
|
|
|
|
|
|
|
/* intensity stereo makes use of an extra degree of freedom */
|
|
|
|
dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
|
|
|
|
temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
|
|
|
|
offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
|
|
|
|
if (N == 2) /* dof=2 is the only case that doesn't fit the model */
|
|
|
|
offset += dof << 1;
|
|
|
|
|
|
|
|
/* grant an additional bias for the first and second pulses */
|
|
|
|
if (f->pulses[i] + offset < 2 * (dof << 3))
|
|
|
|
offset += temp >> 2;
|
|
|
|
else if (f->pulses[i] + offset < 3 * (dof << 3))
|
|
|
|
offset += temp >> 3;
|
|
|
|
|
|
|
|
fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
|
|
|
|
max_bits = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
|
|
|
|
max_bits = FFMAX(max_bits, 0);
|
|
|
|
f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
|
|
|
|
|
|
|
|
/* If fine_bits was rounded down or capped,
|
|
|
|
* give priority for the final fine energy pass */
|
|
|
|
f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
|
|
|
|
|
|
|
|
/* the remaining bits are assigned to PVQ */
|
|
|
|
f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
|
|
|
|
} else {
|
|
|
|
/* all bits go to fine energy except for the sign bit */
|
|
|
|
extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
|
|
|
|
f->pulses[i] -= extrabits;
|
|
|
|
f->fine_bits[i] = 0;
|
|
|
|
f->fine_priority[i] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* hand back a limited number of extra fine energy bits to this band */
|
|
|
|
if (extrabits > 0) {
|
|
|
|
int fineextra = FFMIN(extrabits >> (f->channels + 2),
|
|
|
|
CELT_MAX_FINE_BITS - f->fine_bits[i]);
|
|
|
|
f->fine_bits[i] += fineextra;
|
|
|
|
|
|
|
|
fineextra <<= f->channels + 2;
|
|
|
|
f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
|
|
|
|
extrabits -= fineextra;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
f->remaining = extrabits;
|
|
|
|
|
|
|
|
/* skipped bands dedicate all of their bits for fine energy */
|
|
|
|
for (; i < f->end_band; i++) {
|
|
|
|
f->fine_bits[i] = f->pulses[i] >> (f->channels - 1) >> 3;
|
|
|
|
f->pulses[i] = 0;
|
|
|
|
f->fine_priority[i] = f->fine_bits[i] < 1;
|
|
|
|
}
|
|
|
|
}
|