You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

104 lines
3.5 KiB

/*
* PCM common functions
* Copyright (c) 2003 Fabrice Bellard
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/mathematics.h"
#include "avformat.h"
#include "internal.h"
#include "pcm.h"
#define PCM_DEMUX_TARGET_FPS 10
int ff_pcm_default_packet_size(AVCodecParameters *par)
{
int nb_samples, max_samples, bits_per_sample;
int64_t bitrate;
if (par->block_align <= 0)
return AVERROR(EINVAL);
max_samples = INT_MAX / par->block_align;
bits_per_sample = av_get_bits_per_sample(par->codec_id);
bitrate = par->bit_rate;
/* Don't trust the codecpar bitrate if we can calculate it ourselves */
if (bits_per_sample > 0 && par->sample_rate > 0 && par->ch_layout.nb_channels > 0)
if ((int64_t)par->sample_rate * par->ch_layout.nb_channels < INT64_MAX / bits_per_sample)
bitrate = bits_per_sample * par->sample_rate * par->ch_layout.nb_channels;
if (bitrate > 0) {
nb_samples = av_clip64(bitrate / 8 / PCM_DEMUX_TARGET_FPS / par->block_align, 1, max_samples);
nb_samples = 1 << av_log2(nb_samples);
} else {
/* Fallback to a size based method for a non-pcm codec with unknown bitrate */
nb_samples = av_clip(4096 / par->block_align, 1, max_samples);
}
return par->block_align * nb_samples;
}
int ff_pcm_read_packet(AVFormatContext *s, AVPacket *pkt)
{
int ret, size;
size = ff_pcm_default_packet_size(s->streams[0]->codecpar);
if (size < 0)
return size;
ret = av_get_packet(s->pb, pkt, size);
pkt->flags &= ~AV_PKT_FLAG_CORRUPT;
pkt->stream_index = 0;
return ret;
}
int ff_pcm_read_seek(AVFormatContext *s,
int stream_index, int64_t timestamp, int flags)
{
AVStream *st;
int block_align, byte_rate;
int64_t pos, ret;
st = s->streams[0];
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
11 years ago
block_align = st->codecpar->block_align ? st->codecpar->block_align :
(av_get_bits_per_sample(st->codecpar->codec_id) * st->codecpar->ch_layout.nb_channels) >> 3;
lavf: replace AVStream.codec with AVStream.codecpar Currently, AVStream contains an embedded AVCodecContext instance, which is used by demuxers to export stream parameters to the caller and by muxers to receive stream parameters from the caller. It is also used internally as the codec context that is passed to parsers. In addition, it is also widely used by the callers as the decoding (when demuxer) or encoding (when muxing) context, though this has been officially discouraged since Libav 11. There are multiple important problems with this approach: - the fields in AVCodecContext are in general one of * stream parameters * codec options * codec state However, it's not clear which ones are which. It is consequently unclear which fields are a demuxer allowed to set or a muxer allowed to read. This leads to erratic behaviour depending on whether decoding or encoding is being performed or not (and whether it uses the AVStream embedded codec context). - various synchronization issues arising from the fact that the same context is used by several different APIs (muxers/demuxers, parsers, bitstream filters and encoders/decoders) simultaneously, with there being no clear rules for who can modify what and the different processes being typically delayed with respect to each other. - avformat_find_stream_info() making it necessary to support opening and closing a single codec context multiple times, thus complicating the semantics of freeing various allocated objects in the codec context. Those problems are resolved by replacing the AVStream embedded codec context with a newly added AVCodecParameters instance, which stores only the stream parameters exported by the demuxers or read by the muxers.
11 years ago
byte_rate = st->codecpar->bit_rate ? st->codecpar->bit_rate >> 3 :
block_align * st->codecpar->sample_rate;
if (block_align <= 0 || byte_rate <= 0)
return -1;
if (timestamp < 0) timestamp = 0;
/* compute the position by aligning it to block_align */
pos = av_rescale_rnd(timestamp * byte_rate,
st->time_base.num,
st->time_base.den * (int64_t)block_align,
(flags & AVSEEK_FLAG_BACKWARD) ? AV_ROUND_DOWN : AV_ROUND_UP);
pos *= block_align;
/* recompute exact position */
ffstream(st)->cur_dts = av_rescale(pos, st->time_base.den, byte_rate * (int64_t)st->time_base.num);
if ((ret = avio_seek(s->pb, pos + ffformatcontext(s)->data_offset, SEEK_SET)) < 0)
return ret;
return 0;
}