|
|
|
/*
|
|
|
|
* AltiVec acceleration for colorspace conversion
|
|
|
|
*
|
|
|
|
* copyright (C) 2004 Marc Hoffman <marc.hoffman@analog.com>
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert I420 YV12 to RGB in various formats,
|
|
|
|
* it rejects images that are not in 420 formats,
|
|
|
|
* it rejects images that don't have widths of multiples of 16,
|
|
|
|
* it rejects images that don't have heights of multiples of 2.
|
|
|
|
* Reject defers to C simulation code.
|
|
|
|
*
|
|
|
|
* Lots of optimizations to be done here.
|
|
|
|
*
|
|
|
|
* 1. Need to fix saturation code. I just couldn't get it to fly with packs
|
|
|
|
* and adds, so we currently use max/min to clip.
|
|
|
|
*
|
|
|
|
* 2. The inefficient use of chroma loading needs a bit of brushing up.
|
|
|
|
*
|
|
|
|
* 3. Analysis of pipeline stalls needs to be done. Use shark to identify
|
|
|
|
* pipeline stalls.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* MODIFIED to calculate coeffs from currently selected color space.
|
|
|
|
* MODIFIED core to be a macro where you specify the output format.
|
|
|
|
* ADDED UYVY conversion which is never called due to some thing in swscale.
|
|
|
|
* CORRECTED algorithim selection to be strict on input formats.
|
|
|
|
* ADDED runtime detection of AltiVec.
|
|
|
|
*
|
|
|
|
* ADDED altivec_yuv2packedX vertical scl + RGB converter
|
|
|
|
*
|
|
|
|
* March 27,2004
|
|
|
|
* PERFORMANCE ANALYSIS
|
|
|
|
*
|
|
|
|
* The C version uses 25% of the processor or ~250Mips for D1 video rawvideo
|
|
|
|
* used as test.
|
|
|
|
* The AltiVec version uses 10% of the processor or ~100Mips for D1 video
|
|
|
|
* same sequence.
|
|
|
|
*
|
|
|
|
* 720 * 480 * 30 ~10MPS
|
|
|
|
*
|
|
|
|
* so we have roughly 10 clocks per pixel. This is too high, something has
|
|
|
|
* to be wrong.
|
|
|
|
*
|
|
|
|
* OPTIMIZED clip codes to utilize vec_max and vec_packs removing the
|
|
|
|
* need for vec_min.
|
|
|
|
*
|
|
|
|
* OPTIMIZED DST OUTPUT cache/DMA controls. We are pretty much guaranteed to
|
|
|
|
* have the input video frame, it was just decompressed so it probably resides
|
|
|
|
* in L1 caches. However, we are creating the output video stream. This needs
|
|
|
|
* to use the DSTST instruction to optimize for the cache. We couple this with
|
|
|
|
* the fact that we are not going to be visiting the input buffer again so we
|
|
|
|
* mark it Least Recently Used. This shaves 25% of the processor cycles off.
|
|
|
|
*
|
|
|
|
* Now memcpy is the largest mips consumer in the system, probably due
|
|
|
|
* to the inefficient X11 stuff.
|
|
|
|
*
|
|
|
|
* GL libraries seem to be very slow on this machine 1.33Ghz PB running
|
|
|
|
* Jaguar, this is not the case for my 1Ghz PB. I thought it might be
|
|
|
|
* a versioning issue, however I have libGL.1.2.dylib for both
|
|
|
|
* machines. (We need to figure this out now.)
|
|
|
|
*
|
|
|
|
* GL2 libraries work now with patch for RGB32.
|
|
|
|
*
|
|
|
|
* NOTE: quartz vo driver ARGB32_to_RGB24 consumes 30% of the processor.
|
|
|
|
*
|
|
|
|
* Integrated luma prescaling adjustment for saturation/contrast/brightness
|
|
|
|
* adjustment.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <inttypes.h>
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
#include "libswscale/rgb2rgb.h"
|
|
|
|
#include "libswscale/swscale.h"
|
|
|
|
#include "libswscale/swscale_internal.h"
|
|
|
|
#include "libavutil/attributes.h"
|
|
|
|
#include "libavutil/cpu.h"
|
|
|
|
#include "libavutil/mem_internal.h"
|
|
|
|
#include "libavutil/pixdesc.h"
|
|
|
|
#include "yuv2rgb_altivec.h"
|
|
|
|
|
|
|
|
#if HAVE_ALTIVEC
|
|
|
|
|
|
|
|
#undef PROFILE_THE_BEAST
|
|
|
|
#undef INC_SCALING
|
|
|
|
|
|
|
|
typedef unsigned char ubyte;
|
|
|
|
typedef signed char sbyte;
|
|
|
|
|
|
|
|
/* RGB interleaver, 16 planar pels 8-bit samples per channel in
|
|
|
|
* homogeneous vector registers x0,x1,x2 are interleaved with the
|
|
|
|
* following technique:
|
|
|
|
*
|
|
|
|
* o0 = vec_mergeh(x0, x1);
|
|
|
|
* o1 = vec_perm(o0, x2, perm_rgb_0);
|
|
|
|
* o2 = vec_perm(o0, x2, perm_rgb_1);
|
|
|
|
* o3 = vec_mergel(x0, x1);
|
|
|
|
* o4 = vec_perm(o3, o2, perm_rgb_2);
|
|
|
|
* o5 = vec_perm(o3, o2, perm_rgb_3);
|
|
|
|
*
|
|
|
|
* perm_rgb_0: o0(RG).h v1(B) --> o1*
|
|
|
|
* 0 1 2 3 4
|
|
|
|
* rgbr|gbrg|brgb|rgbr
|
|
|
|
* 0010 0100 1001 0010
|
|
|
|
* 0102 3145 2673 894A
|
|
|
|
*
|
|
|
|
* perm_rgb_1: o0(RG).h v1(B) --> o2
|
|
|
|
* 0 1 2 3 4
|
|
|
|
* gbrg|brgb|bbbb|bbbb
|
|
|
|
* 0100 1001 1111 1111
|
|
|
|
* B5CD 6EF7 89AB CDEF
|
|
|
|
*
|
|
|
|
* perm_rgb_2: o3(RG).l o2(rgbB.l) --> o4*
|
|
|
|
* 0 1 2 3 4
|
|
|
|
* gbrg|brgb|rgbr|gbrg
|
|
|
|
* 1111 1111 0010 0100
|
|
|
|
* 89AB CDEF 0182 3945
|
|
|
|
*
|
|
|
|
* perm_rgb_2: o3(RG).l o2(rgbB.l) ---> o5*
|
|
|
|
* 0 1 2 3 4
|
|
|
|
* brgb|rgbr|gbrg|brgb
|
|
|
|
* 1001 0010 0100 1001
|
|
|
|
* a67b 89cA BdCD eEFf
|
|
|
|
*/
|
|
|
|
static const vector unsigned char
|
|
|
|
perm_rgb_0 = { 0x00, 0x01, 0x10, 0x02, 0x03, 0x11, 0x04, 0x05,
|
|
|
|
0x12, 0x06, 0x07, 0x13, 0x08, 0x09, 0x14, 0x0a },
|
|
|
|
perm_rgb_1 = { 0x0b, 0x15, 0x0c, 0x0d, 0x16, 0x0e, 0x0f, 0x17,
|
|
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
|
|
|
|
perm_rgb_2 = { 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
|
|
0x00, 0x01, 0x18, 0x02, 0x03, 0x19, 0x04, 0x05 },
|
|
|
|
perm_rgb_3 = { 0x1a, 0x06, 0x07, 0x1b, 0x08, 0x09, 0x1c, 0x0a,
|
|
|
|
0x0b, 0x1d, 0x0c, 0x0d, 0x1e, 0x0e, 0x0f, 0x1f };
|
|
|
|
|
|
|
|
#define vec_merge3(x2, x1, x0, y0, y1, y2) \
|
|
|
|
do { \
|
|
|
|
__typeof__(x0) o0, o2, o3; \
|
|
|
|
o0 = vec_mergeh(x0, x1); \
|
|
|
|
y0 = vec_perm(o0, x2, perm_rgb_0); \
|
|
|
|
o2 = vec_perm(o0, x2, perm_rgb_1); \
|
|
|
|
o3 = vec_mergel(x0, x1); \
|
|
|
|
y1 = vec_perm(o3, o2, perm_rgb_2); \
|
|
|
|
y2 = vec_perm(o3, o2, perm_rgb_3); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define vec_mstbgr24(x0, x1, x2, ptr) \
|
|
|
|
do { \
|
|
|
|
__typeof__(x0) _0, _1, _2; \
|
|
|
|
vec_merge3(x0, x1, x2, _0, _1, _2); \
|
|
|
|
vec_st(_0, 0, ptr++); \
|
|
|
|
vec_st(_1, 0, ptr++); \
|
|
|
|
vec_st(_2, 0, ptr++); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define vec_mstrgb24(x0, x1, x2, ptr) \
|
|
|
|
do { \
|
|
|
|
__typeof__(x0) _0, _1, _2; \
|
|
|
|
vec_merge3(x2, x1, x0, _0, _1, _2); \
|
|
|
|
vec_st(_0, 0, ptr++); \
|
|
|
|
vec_st(_1, 0, ptr++); \
|
|
|
|
vec_st(_2, 0, ptr++); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/* pack the pixels in rgb0 format
|
|
|
|
* msb R
|
|
|
|
* lsb 0
|
|
|
|
*/
|
|
|
|
#define vec_mstrgb32(T, x0, x1, x2, x3, ptr) \
|
|
|
|
do { \
|
|
|
|
T _0, _1, _2, _3; \
|
|
|
|
_0 = vec_mergeh(x0, x1); \
|
|
|
|
_1 = vec_mergeh(x2, x3); \
|
|
|
|
_2 = (T) vec_mergeh((vector unsigned short) _0, \
|
|
|
|
(vector unsigned short) _1); \
|
|
|
|
_3 = (T) vec_mergel((vector unsigned short) _0, \
|
|
|
|
(vector unsigned short) _1); \
|
|
|
|
vec_st(_2, 0 * 16, (T *) ptr); \
|
|
|
|
vec_st(_3, 1 * 16, (T *) ptr); \
|
|
|
|
_0 = vec_mergel(x0, x1); \
|
|
|
|
_1 = vec_mergel(x2, x3); \
|
|
|
|
_2 = (T) vec_mergeh((vector unsigned short) _0, \
|
|
|
|
(vector unsigned short) _1); \
|
|
|
|
_3 = (T) vec_mergel((vector unsigned short) _0, \
|
|
|
|
(vector unsigned short) _1); \
|
|
|
|
vec_st(_2, 2 * 16, (T *) ptr); \
|
|
|
|
vec_st(_3, 3 * 16, (T *) ptr); \
|
|
|
|
ptr += 4; \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* 1 0 1.4021 | | Y |
|
|
|
|
* 1 -0.3441 -0.7142 |x| Cb|
|
|
|
|
* 1 1.7718 0 | | Cr|
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Y: [-128 127]
|
|
|
|
* Cb/Cr : [-128 127]
|
|
|
|
*
|
|
|
|
* typical YUV conversion works on Y: 0-255 this version has been
|
|
|
|
* optimized for JPEG decoding.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if HAVE_BIGENDIAN
|
|
|
|
#define vec_unh(x) \
|
|
|
|
(vector signed short) \
|
|
|
|
vec_perm(x, (__typeof__(x)) { 0 }, \
|
|
|
|
((vector unsigned char) { \
|
|
|
|
0x10, 0x00, 0x10, 0x01, 0x10, 0x02, 0x10, 0x03, \
|
|
|
|
0x10, 0x04, 0x10, 0x05, 0x10, 0x06, 0x10, 0x07 }))
|
|
|
|
|
|
|
|
#define vec_unl(x) \
|
|
|
|
(vector signed short) \
|
|
|
|
vec_perm(x, (__typeof__(x)) { 0 }, \
|
|
|
|
((vector unsigned char) { \
|
|
|
|
0x10, 0x08, 0x10, 0x09, 0x10, 0x0A, 0x10, 0x0B, \
|
|
|
|
0x10, 0x0C, 0x10, 0x0D, 0x10, 0x0E, 0x10, 0x0F }))
|
|
|
|
#else
|
|
|
|
#define vec_unh(x)(vector signed short) vec_mergeh(x,(__typeof__(x)) { 0 })
|
|
|
|
#define vec_unl(x)(vector signed short) vec_mergel(x,(__typeof__(x)) { 0 })
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define vec_clip_s16(x) \
|
|
|
|
vec_max(vec_min(x, ((vector signed short) { \
|
|
|
|
235, 235, 235, 235, 235, 235, 235, 235 })), \
|
|
|
|
((vector signed short) { 16, 16, 16, 16, 16, 16, 16, 16 }))
|
|
|
|
|
|
|
|
#define vec_packclp(x, y) \
|
|
|
|
(vector unsigned char) \
|
|
|
|
vec_packs((vector unsigned short) \
|
|
|
|
vec_max(x, ((vector signed short) { 0 })), \
|
|
|
|
(vector unsigned short) \
|
|
|
|
vec_max(y, ((vector signed short) { 0 })))
|
|
|
|
|
swscale: rename SwsContext to SwsInternal
And preserve the public SwsContext as separate name. The motivation here
is that I want to turn SwsContext into a public struct, while keeping the
internal implementation hidden. Additionally, I also want to be able to
use multiple internal implementations, e.g. for GPU devices.
This commit does not include any functional changes. For the most part, it is
a simple rename. The only complications arise from the public facing API
functions, which preserve their current type (and hence require an additional
unwrapping step internally), and the checkasm test framework, which directly
accesses SwsInternal.
For consistency, the affected functions that need to maintain a distionction
have generally been changed to refer to the SwsContext as *sws, and the
SwsInternal as *c.
In an upcoming commit, I will provide a backing definition for the public
SwsContext, and update `sws_internal()` to dereference the internal struct
instead of merely casting it.
Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
3 months ago
|
|
|
static inline void cvtyuvtoRGB(SwsInternal *c, vector signed short Y,
|
|
|
|
vector signed short U, vector signed short V,
|
|
|
|
vector signed short *R, vector signed short *G,
|
|
|
|
vector signed short *B)
|
|
|
|
{
|
|
|
|
vector signed short vx, ux, uvx;
|
|
|
|
|
|
|
|
Y = vec_mradds(Y, c->CY, c->OY);
|
|
|
|
U = vec_sub(U, (vector signed short)
|
|
|
|
vec_splat((vector signed short) { 128 }, 0));
|
|
|
|
V = vec_sub(V, (vector signed short)
|
|
|
|
vec_splat((vector signed short) { 128 }, 0));
|
|
|
|
|
|
|
|
// ux = (CBU * (u << c->CSHIFT) + 0x4000) >> 15;
|
|
|
|
ux = vec_sl(U, c->CSHIFT);
|
|
|
|
*B = vec_mradds(ux, c->CBU, Y);
|
|
|
|
|
|
|
|
// vx = (CRV * (v << c->CSHIFT) + 0x4000) >> 15;
|
|
|
|
vx = vec_sl(V, c->CSHIFT);
|
|
|
|
*R = vec_mradds(vx, c->CRV, Y);
|
|
|
|
|
|
|
|
// uvx = ((CGU * u) + (CGV * v)) >> 15;
|
|
|
|
uvx = vec_mradds(U, c->CGU, Y);
|
|
|
|
*G = vec_mradds(V, c->CGV, uvx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* ------------------------------------------------------------------------------
|
|
|
|
* CS converters
|
|
|
|
* ------------------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
#if !HAVE_VSX
|
|
|
|
static inline vector unsigned char vec_xl(signed long long offset, const ubyte *addr)
|
|
|
|
{
|
|
|
|
const vector unsigned char *v_addr = (const vector unsigned char *) (addr + offset);
|
|
|
|
vector unsigned char align_perm = vec_lvsl(offset, addr);
|
|
|
|
|
|
|
|
return (vector unsigned char) vec_perm(v_addr[0], v_addr[1], align_perm);
|
|
|
|
}
|
|
|
|
#endif /* !HAVE_VSX */
|
|
|
|
|
|
|
|
#define DEFCSP420_CVT(name, out_pixels) \
|
swscale: rename SwsContext to SwsInternal
And preserve the public SwsContext as separate name. The motivation here
is that I want to turn SwsContext into a public struct, while keeping the
internal implementation hidden. Additionally, I also want to be able to
use multiple internal implementations, e.g. for GPU devices.
This commit does not include any functional changes. For the most part, it is
a simple rename. The only complications arise from the public facing API
functions, which preserve their current type (and hence require an additional
unwrapping step internally), and the checkasm test framework, which directly
accesses SwsInternal.
For consistency, the affected functions that need to maintain a distionction
have generally been changed to refer to the SwsContext as *sws, and the
SwsInternal as *c.
In an upcoming commit, I will provide a backing definition for the public
SwsContext, and update `sws_internal()` to dereference the internal struct
instead of merely casting it.
Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
3 months ago
|
|
|
static int altivec_ ## name(SwsInternal *c, const unsigned char *const *in, \
|
|
|
|
const int *instrides, int srcSliceY, int srcSliceH, \
|
|
|
|
unsigned char *const *oplanes, const int *outstrides) \
|
|
|
|
{ \
|
|
|
|
int w = c->opts.src_w; \
|
|
|
|
int h = srcSliceH; \
|
|
|
|
int i, j; \
|
|
|
|
int instrides_scl[3]; \
|
|
|
|
vector unsigned char y0, y1; \
|
|
|
|
\
|
|
|
|
vector signed char u, v; \
|
|
|
|
\
|
|
|
|
vector signed short Y0, Y1, Y2, Y3; \
|
|
|
|
vector signed short U, V; \
|
|
|
|
vector signed short vx, ux, uvx; \
|
|
|
|
vector signed short vx0, ux0, uvx0; \
|
|
|
|
vector signed short vx1, ux1, uvx1; \
|
|
|
|
vector signed short R0, G0, B0; \
|
|
|
|
vector signed short R1, G1, B1; \
|
|
|
|
vector unsigned char R, G, B; \
|
|
|
|
\
|
|
|
|
vector signed short lCY = c->CY; \
|
|
|
|
vector signed short lOY = c->OY; \
|
|
|
|
vector signed short lCRV = c->CRV; \
|
|
|
|
vector signed short lCBU = c->CBU; \
|
|
|
|
vector signed short lCGU = c->CGU; \
|
|
|
|
vector signed short lCGV = c->CGV; \
|
|
|
|
vector unsigned short lCSHIFT = c->CSHIFT; \
|
|
|
|
\
|
|
|
|
const ubyte *y1i = in[0]; \
|
|
|
|
const ubyte *y2i = in[0] + instrides[0]; \
|
|
|
|
const ubyte *ui = in[1]; \
|
|
|
|
const ubyte *vi = in[2]; \
|
|
|
|
\
|
|
|
|
vector unsigned char *oute, *outo; \
|
|
|
|
\
|
|
|
|
/* loop moves y{1, 2}i by w */ \
|
|
|
|
instrides_scl[0] = instrides[0] * 2 - w; \
|
|
|
|
/* loop moves ui by w / 2 */ \
|
|
|
|
instrides_scl[1] = instrides[1] - w / 2; \
|
|
|
|
/* loop moves vi by w / 2 */ \
|
|
|
|
instrides_scl[2] = instrides[2] - w / 2; \
|
|
|
|
\
|
|
|
|
for (i = 0; i < h / 2; i++) { \
|
|
|
|
oute = (vector unsigned char *)(oplanes[0] + outstrides[0] * \
|
|
|
|
(srcSliceY + i * 2)); \
|
|
|
|
outo = oute + (outstrides[0] >> 4); \
|
|
|
|
vec_dstst(outo, (0x02000002 | (((w * 3 + 32) / 32) << 16)), 0); \
|
|
|
|
vec_dstst(oute, (0x02000002 | (((w * 3 + 32) / 32) << 16)), 1); \
|
|
|
|
\
|
|
|
|
for (j = 0; j < w / 16; j++) { \
|
|
|
|
y0 = vec_xl(0, y1i); \
|
|
|
|
\
|
|
|
|
y1 = vec_xl(0, y2i); \
|
|
|
|
\
|
|
|
|
u = (vector signed char) vec_xl(0, ui); \
|
|
|
|
\
|
|
|
|
v = (vector signed char) vec_xl(0, vi); \
|
|
|
|
\
|
|
|
|
u = (vector signed char) \
|
|
|
|
vec_sub(u, \
|
|
|
|
(vector signed char) \
|
|
|
|
vec_splat((vector signed char) { 128 }, 0)); \
|
|
|
|
v = (vector signed char) \
|
|
|
|
vec_sub(v, \
|
|
|
|
(vector signed char) \
|
|
|
|
vec_splat((vector signed char) { 128 }, 0)); \
|
|
|
|
\
|
|
|
|
U = vec_unpackh(u); \
|
|
|
|
V = vec_unpackh(v); \
|
|
|
|
\
|
|
|
|
Y0 = vec_unh(y0); \
|
|
|
|
Y1 = vec_unl(y0); \
|
|
|
|
Y2 = vec_unh(y1); \
|
|
|
|
Y3 = vec_unl(y1); \
|
|
|
|
\
|
|
|
|
Y0 = vec_mradds(Y0, lCY, lOY); \
|
|
|
|
Y1 = vec_mradds(Y1, lCY, lOY); \
|
|
|
|
Y2 = vec_mradds(Y2, lCY, lOY); \
|
|
|
|
Y3 = vec_mradds(Y3, lCY, lOY); \
|
|
|
|
\
|
|
|
|
/* ux = (CBU * (u << CSHIFT) + 0x4000) >> 15 */ \
|
|
|
|
ux = vec_sl(U, lCSHIFT); \
|
|
|
|
ux = vec_mradds(ux, lCBU, (vector signed short) { 0 }); \
|
|
|
|
ux0 = vec_mergeh(ux, ux); \
|
|
|
|
ux1 = vec_mergel(ux, ux); \
|
|
|
|
\
|
|
|
|
/* vx = (CRV * (v << CSHIFT) + 0x4000) >> 15; */ \
|
|
|
|
vx = vec_sl(V, lCSHIFT); \
|
|
|
|
vx = vec_mradds(vx, lCRV, (vector signed short) { 0 }); \
|
|
|
|
vx0 = vec_mergeh(vx, vx); \
|
|
|
|
vx1 = vec_mergel(vx, vx); \
|
|
|
|
\
|
|
|
|
/* uvx = ((CGU * u) + (CGV * v)) >> 15 */ \
|
|
|
|
uvx = vec_mradds(U, lCGU, (vector signed short) { 0 }); \
|
|
|
|
uvx = vec_mradds(V, lCGV, uvx); \
|
|
|
|
uvx0 = vec_mergeh(uvx, uvx); \
|
|
|
|
uvx1 = vec_mergel(uvx, uvx); \
|
|
|
|
\
|
|
|
|
R0 = vec_add(Y0, vx0); \
|
|
|
|
G0 = vec_add(Y0, uvx0); \
|
|
|
|
B0 = vec_add(Y0, ux0); \
|
|
|
|
R1 = vec_add(Y1, vx1); \
|
|
|
|
G1 = vec_add(Y1, uvx1); \
|
|
|
|
B1 = vec_add(Y1, ux1); \
|
|
|
|
\
|
|
|
|
R = vec_packclp(R0, R1); \
|
|
|
|
G = vec_packclp(G0, G1); \
|
|
|
|
B = vec_packclp(B0, B1); \
|
|
|
|
\
|
|
|
|
out_pixels(R, G, B, oute); \
|
|
|
|
\
|
|
|
|
R0 = vec_add(Y2, vx0); \
|
|
|
|
G0 = vec_add(Y2, uvx0); \
|
|
|
|
B0 = vec_add(Y2, ux0); \
|
|
|
|
R1 = vec_add(Y3, vx1); \
|
|
|
|
G1 = vec_add(Y3, uvx1); \
|
|
|
|
B1 = vec_add(Y3, ux1); \
|
|
|
|
R = vec_packclp(R0, R1); \
|
|
|
|
G = vec_packclp(G0, G1); \
|
|
|
|
B = vec_packclp(B0, B1); \
|
|
|
|
\
|
|
|
|
\
|
|
|
|
out_pixels(R, G, B, outo); \
|
|
|
|
\
|
|
|
|
y1i += 16; \
|
|
|
|
y2i += 16; \
|
|
|
|
ui += 8; \
|
|
|
|
vi += 8; \
|
|
|
|
} \
|
|
|
|
\
|
|
|
|
ui += instrides_scl[1]; \
|
|
|
|
vi += instrides_scl[2]; \
|
|
|
|
y1i += instrides_scl[0]; \
|
|
|
|
y2i += instrides_scl[0]; \
|
|
|
|
} \
|
|
|
|
return srcSliceH; \
|
|
|
|
}
|
|
|
|
|
|
|
|
#define out_abgr(a, b, c, ptr) \
|
|
|
|
vec_mstrgb32(__typeof__(a), ((__typeof__(a)) vec_splat((__typeof__(a)){ 255 }, 0)), c, b, a, ptr)
|
|
|
|
#define out_bgra(a, b, c, ptr) \
|
|
|
|
vec_mstrgb32(__typeof__(a), c, b, a, ((__typeof__(a)) vec_splat((__typeof__(a)){ 255 }, 0)), ptr)
|
|
|
|
#define out_rgba(a, b, c, ptr) \
|
|
|
|
vec_mstrgb32(__typeof__(a), a, b, c, ((__typeof__(a)) vec_splat((__typeof__(a)){ 255 }, 0)), ptr)
|
|
|
|
#define out_argb(a, b, c, ptr) \
|
|
|
|
vec_mstrgb32(__typeof__(a), ((__typeof__(a)) vec_splat((__typeof__(a)){ 255 }, 0)), a, b, c, ptr)
|
|
|
|
#define out_rgb24(a, b, c, ptr) vec_mstrgb24(a, b, c, ptr)
|
|
|
|
#define out_bgr24(a, b, c, ptr) vec_mstbgr24(a, b, c, ptr)
|
|
|
|
|
|
|
|
DEFCSP420_CVT(yuv2_abgr, out_abgr)
|
|
|
|
DEFCSP420_CVT(yuv2_bgra, out_bgra)
|
|
|
|
DEFCSP420_CVT(yuv2_rgba, out_rgba)
|
|
|
|
DEFCSP420_CVT(yuv2_argb, out_argb)
|
|
|
|
DEFCSP420_CVT(yuv2_rgb24, out_rgb24)
|
|
|
|
DEFCSP420_CVT(yuv2_bgr24, out_bgr24)
|
|
|
|
|
|
|
|
// uyvy|uyvy|uyvy|uyvy
|
|
|
|
// 0123 4567 89ab cdef
|
|
|
|
static const vector unsigned char
|
|
|
|
demux_u = { 0x10, 0x00, 0x10, 0x00,
|
|
|
|
0x10, 0x04, 0x10, 0x04,
|
|
|
|
0x10, 0x08, 0x10, 0x08,
|
|
|
|
0x10, 0x0c, 0x10, 0x0c },
|
|
|
|
demux_v = { 0x10, 0x02, 0x10, 0x02,
|
|
|
|
0x10, 0x06, 0x10, 0x06,
|
|
|
|
0x10, 0x0A, 0x10, 0x0A,
|
|
|
|
0x10, 0x0E, 0x10, 0x0E },
|
|
|
|
demux_y = { 0x10, 0x01, 0x10, 0x03,
|
|
|
|
0x10, 0x05, 0x10, 0x07,
|
|
|
|
0x10, 0x09, 0x10, 0x0B,
|
|
|
|
0x10, 0x0D, 0x10, 0x0F };
|
|
|
|
|
|
|
|
/*
|
|
|
|
* this is so I can play live CCIR raw video
|
|
|
|
*/
|
swscale: rename SwsContext to SwsInternal
And preserve the public SwsContext as separate name. The motivation here
is that I want to turn SwsContext into a public struct, while keeping the
internal implementation hidden. Additionally, I also want to be able to
use multiple internal implementations, e.g. for GPU devices.
This commit does not include any functional changes. For the most part, it is
a simple rename. The only complications arise from the public facing API
functions, which preserve their current type (and hence require an additional
unwrapping step internally), and the checkasm test framework, which directly
accesses SwsInternal.
For consistency, the affected functions that need to maintain a distionction
have generally been changed to refer to the SwsContext as *sws, and the
SwsInternal as *c.
In an upcoming commit, I will provide a backing definition for the public
SwsContext, and update `sws_internal()` to dereference the internal struct
instead of merely casting it.
Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
3 months ago
|
|
|
static int altivec_uyvy_rgb32(SwsInternal *c, const unsigned char *const *in,
|
|
|
|
const int *instrides, int srcSliceY, int srcSliceH,
|
|
|
|
unsigned char *const *oplanes, const int *outstrides)
|
|
|
|
{
|
|
|
|
int w = c->opts.src_w;
|
|
|
|
int h = srcSliceH;
|
|
|
|
int i, j;
|
|
|
|
vector unsigned char uyvy;
|
|
|
|
vector signed short Y, U, V;
|
|
|
|
vector signed short R0, G0, B0, R1, G1, B1;
|
|
|
|
vector unsigned char R, G, B;
|
|
|
|
vector unsigned char *out;
|
|
|
|
const ubyte *img;
|
|
|
|
|
|
|
|
img = in[0];
|
|
|
|
out = (vector unsigned char *) (oplanes[0] + srcSliceY * outstrides[0]);
|
|
|
|
|
|
|
|
for (i = 0; i < h; i++)
|
|
|
|
for (j = 0; j < w / 16; j++) {
|
|
|
|
uyvy = vec_ld(0, img);
|
|
|
|
|
|
|
|
U = (vector signed short)
|
|
|
|
vec_perm(uyvy, (vector unsigned char) { 0 }, demux_u);
|
|
|
|
V = (vector signed short)
|
|
|
|
vec_perm(uyvy, (vector unsigned char) { 0 }, demux_v);
|
|
|
|
Y = (vector signed short)
|
|
|
|
vec_perm(uyvy, (vector unsigned char) { 0 }, demux_y);
|
|
|
|
|
|
|
|
cvtyuvtoRGB(c, Y, U, V, &R0, &G0, &B0);
|
|
|
|
|
|
|
|
uyvy = vec_ld(16, img);
|
|
|
|
|
|
|
|
U = (vector signed short)
|
|
|
|
vec_perm(uyvy, (vector unsigned char) { 0 }, demux_u);
|
|
|
|
V = (vector signed short)
|
|
|
|
vec_perm(uyvy, (vector unsigned char) { 0 }, demux_v);
|
|
|
|
Y = (vector signed short)
|
|
|
|
vec_perm(uyvy, (vector unsigned char) { 0 }, demux_y);
|
|
|
|
|
|
|
|
cvtyuvtoRGB(c, Y, U, V, &R1, &G1, &B1);
|
|
|
|
|
|
|
|
R = vec_packclp(R0, R1);
|
|
|
|
G = vec_packclp(G0, G1);
|
|
|
|
B = vec_packclp(B0, B1);
|
|
|
|
|
|
|
|
// vec_mstbgr24 (R,G,B, out);
|
|
|
|
out_rgba(R, G, B, out);
|
|
|
|
|
|
|
|
img += 32;
|
|
|
|
}
|
|
|
|
return srcSliceH;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* HAVE_ALTIVEC */
|
|
|
|
|
|
|
|
/* Ok currently the acceleration routine only supports
|
|
|
|
* inputs of widths a multiple of 16
|
|
|
|
* and heights a multiple 2
|
|
|
|
*
|
|
|
|
* So we just fall back to the C codes for this.
|
|
|
|
*/
|
swscale: rename SwsContext to SwsInternal
And preserve the public SwsContext as separate name. The motivation here
is that I want to turn SwsContext into a public struct, while keeping the
internal implementation hidden. Additionally, I also want to be able to
use multiple internal implementations, e.g. for GPU devices.
This commit does not include any functional changes. For the most part, it is
a simple rename. The only complications arise from the public facing API
functions, which preserve their current type (and hence require an additional
unwrapping step internally), and the checkasm test framework, which directly
accesses SwsInternal.
For consistency, the affected functions that need to maintain a distionction
have generally been changed to refer to the SwsContext as *sws, and the
SwsInternal as *c.
In an upcoming commit, I will provide a backing definition for the public
SwsContext, and update `sws_internal()` to dereference the internal struct
instead of merely casting it.
Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
3 months ago
|
|
|
av_cold SwsFunc ff_yuv2rgb_init_ppc(SwsInternal *c)
|
|
|
|
{
|
|
|
|
#if HAVE_ALTIVEC
|
|
|
|
if (!(av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC))
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* and this seems not to matter too much I tried a bunch of
|
|
|
|
* videos with abnormal widths and MPlayer crashes elsewhere.
|
|
|
|
* mplayer -vo x11 -rawvideo on:w=350:h=240 raw-350x240.eyuv
|
|
|
|
* boom with X11 bad match.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
if ((c->opts.src_w & 0xf) != 0)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
switch (c->opts.src_format) {
|
|
|
|
case AV_PIX_FMT_YUV410P:
|
|
|
|
case AV_PIX_FMT_YUV420P:
|
|
|
|
/*case IMGFMT_CLPL: ??? */
|
|
|
|
case AV_PIX_FMT_GRAY8:
|
|
|
|
case AV_PIX_FMT_NV12:
|
|
|
|
case AV_PIX_FMT_NV21:
|
|
|
|
if ((c->opts.src_h & 0x1) != 0)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The below accelerations for YUV2RGB are known broken.
|
|
|
|
* See: 'fate-checkasm-sw_yuv2rgb' with --enable-altivec
|
|
|
|
* They are disabled for the moment, until such time as
|
|
|
|
* they can be repaired.
|
|
|
|
*/
|
|
|
|
#if 0
|
|
|
|
switch (c->opts.dst_format) {
|
|
|
|
case AV_PIX_FMT_RGB24:
|
|
|
|
av_log(c, AV_LOG_WARNING, "ALTIVEC: Color Space RGB24\n");
|
|
|
|
return altivec_yuv2_rgb24;
|
|
|
|
case AV_PIX_FMT_BGR24:
|
|
|
|
av_log(c, AV_LOG_WARNING, "ALTIVEC: Color Space BGR24\n");
|
|
|
|
return altivec_yuv2_bgr24;
|
|
|
|
case AV_PIX_FMT_ARGB:
|
|
|
|
av_log(c, AV_LOG_WARNING, "ALTIVEC: Color Space ARGB\n");
|
|
|
|
return altivec_yuv2_argb;
|
|
|
|
case AV_PIX_FMT_ABGR:
|
|
|
|
av_log(c, AV_LOG_WARNING, "ALTIVEC: Color Space ABGR\n");
|
|
|
|
return altivec_yuv2_abgr;
|
|
|
|
case AV_PIX_FMT_RGBA:
|
|
|
|
av_log(c, AV_LOG_WARNING, "ALTIVEC: Color Space RGBA\n");
|
|
|
|
return altivec_yuv2_rgba;
|
|
|
|
case AV_PIX_FMT_BGRA:
|
|
|
|
av_log(c, AV_LOG_WARNING, "ALTIVEC: Color Space BGRA\n");
|
|
|
|
return altivec_yuv2_bgra;
|
|
|
|
default: return NULL;
|
|
|
|
}
|
|
|
|
#endif /* disabled YUV2RGB acceleration */
|
|
|
|
break;
|
|
|
|
|
|
|
|
case AV_PIX_FMT_UYVY422:
|
|
|
|
switch (c->opts.dst_format) {
|
|
|
|
case AV_PIX_FMT_BGR32:
|
|
|
|
av_log(c, AV_LOG_WARNING, "ALTIVEC: Color Space UYVY -> RGB32\n");
|
|
|
|
return altivec_uyvy_rgb32;
|
|
|
|
default: return NULL;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
#endif /* HAVE_ALTIVEC */
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
swscale: rename SwsContext to SwsInternal
And preserve the public SwsContext as separate name. The motivation here
is that I want to turn SwsContext into a public struct, while keeping the
internal implementation hidden. Additionally, I also want to be able to
use multiple internal implementations, e.g. for GPU devices.
This commit does not include any functional changes. For the most part, it is
a simple rename. The only complications arise from the public facing API
functions, which preserve their current type (and hence require an additional
unwrapping step internally), and the checkasm test framework, which directly
accesses SwsInternal.
For consistency, the affected functions that need to maintain a distionction
have generally been changed to refer to the SwsContext as *sws, and the
SwsInternal as *c.
In an upcoming commit, I will provide a backing definition for the public
SwsContext, and update `sws_internal()` to dereference the internal struct
instead of merely casting it.
Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
3 months ago
|
|
|
av_cold void ff_yuv2rgb_init_tables_ppc(SwsInternal *c,
|
|
|
|
const int inv_table[4],
|
|
|
|
int brightness,
|
|
|
|
int contrast,
|
|
|
|
int saturation)
|
|
|
|
{
|
|
|
|
#if HAVE_ALTIVEC
|
|
|
|
union {
|
|
|
|
DECLARE_ALIGNED(16, signed short, tmp)[8];
|
|
|
|
vector signed short vec;
|
|
|
|
} buf;
|
|
|
|
|
|
|
|
if (!(av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC))
|
|
|
|
return;
|
|
|
|
|
|
|
|
buf.tmp[0] = ((0xffffLL) * contrast >> 8) >> 9; // cy
|
|
|
|
buf.tmp[1] = -256 * brightness; // oy
|
|
|
|
buf.tmp[2] = (inv_table[0] >> 3) * (contrast >> 16) * (saturation >> 16); // crv
|
|
|
|
buf.tmp[3] = (inv_table[1] >> 3) * (contrast >> 16) * (saturation >> 16); // cbu
|
|
|
|
buf.tmp[4] = -((inv_table[2] >> 1) * (contrast >> 16) * (saturation >> 16)); // cgu
|
|
|
|
buf.tmp[5] = -((inv_table[3] >> 1) * (contrast >> 16) * (saturation >> 16)); // cgv
|
|
|
|
|
|
|
|
c->CSHIFT = (vector unsigned short) vec_splat_u16(2);
|
|
|
|
c->CY = vec_splat((vector signed short) buf.vec, 0);
|
|
|
|
c->OY = vec_splat((vector signed short) buf.vec, 1);
|
|
|
|
c->CRV = vec_splat((vector signed short) buf.vec, 2);
|
|
|
|
c->CBU = vec_splat((vector signed short) buf.vec, 3);
|
|
|
|
c->CGU = vec_splat((vector signed short) buf.vec, 4);
|
|
|
|
c->CGV = vec_splat((vector signed short) buf.vec, 5);
|
|
|
|
return;
|
|
|
|
#endif /* HAVE_ALTIVEC */
|
|
|
|
}
|
|
|
|
|
|
|
|
#if HAVE_ALTIVEC
|
|
|
|
|
swscale: rename SwsContext to SwsInternal
And preserve the public SwsContext as separate name. The motivation here
is that I want to turn SwsContext into a public struct, while keeping the
internal implementation hidden. Additionally, I also want to be able to
use multiple internal implementations, e.g. for GPU devices.
This commit does not include any functional changes. For the most part, it is
a simple rename. The only complications arise from the public facing API
functions, which preserve their current type (and hence require an additional
unwrapping step internally), and the checkasm test framework, which directly
accesses SwsInternal.
For consistency, the affected functions that need to maintain a distionction
have generally been changed to refer to the SwsContext as *sws, and the
SwsInternal as *c.
In an upcoming commit, I will provide a backing definition for the public
SwsContext, and update `sws_internal()` to dereference the internal struct
instead of merely casting it.
Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
3 months ago
|
|
|
static av_always_inline void yuv2packedX_altivec(SwsInternal *c,
|
|
|
|
const int16_t *lumFilter,
|
|
|
|
const int16_t **lumSrc,
|
|
|
|
int lumFilterSize,
|
|
|
|
const int16_t *chrFilter,
|
|
|
|
const int16_t **chrUSrc,
|
|
|
|
const int16_t **chrVSrc,
|
|
|
|
int chrFilterSize,
|
|
|
|
const int16_t **alpSrc,
|
|
|
|
uint8_t *dest,
|
|
|
|
int dstW, int dstY,
|
|
|
|
enum AVPixelFormat target)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
vector signed short X, X0, X1, Y0, U0, V0, Y1, U1, V1, U, V;
|
|
|
|
vector signed short R0, G0, B0, R1, G1, B1;
|
|
|
|
|
|
|
|
vector unsigned char R, G, B;
|
|
|
|
vector unsigned char *out, *nout;
|
|
|
|
|
|
|
|
vector signed short RND = vec_splat_s16(1 << 3);
|
|
|
|
vector unsigned short SCL = vec_splat_u16(4);
|
|
|
|
DECLARE_ALIGNED(16, unsigned int, scratch)[16];
|
|
|
|
|
|
|
|
vector signed short *YCoeffs, *CCoeffs;
|
|
|
|
|
|
|
|
YCoeffs = c->vYCoeffsBank + dstY * lumFilterSize;
|
|
|
|
CCoeffs = c->vCCoeffsBank + dstY * chrFilterSize;
|
|
|
|
|
|
|
|
out = (vector unsigned char *) dest;
|
|
|
|
|
|
|
|
for (i = 0; i < dstW; i += 16) {
|
|
|
|
Y0 = RND;
|
|
|
|
Y1 = RND;
|
|
|
|
/* extract 16 coeffs from lumSrc */
|
|
|
|
for (j = 0; j < lumFilterSize; j++) {
|
|
|
|
X0 = vec_ld(0, &lumSrc[j][i]);
|
|
|
|
X1 = vec_ld(16, &lumSrc[j][i]);
|
|
|
|
Y0 = vec_mradds(X0, YCoeffs[j], Y0);
|
|
|
|
Y1 = vec_mradds(X1, YCoeffs[j], Y1);
|
|
|
|
}
|
|
|
|
|
|
|
|
U = RND;
|
|
|
|
V = RND;
|
|
|
|
/* extract 8 coeffs from U,V */
|
|
|
|
for (j = 0; j < chrFilterSize; j++) {
|
|
|
|
X = vec_ld(0, &chrUSrc[j][i / 2]);
|
|
|
|
U = vec_mradds(X, CCoeffs[j], U);
|
|
|
|
X = vec_ld(0, &chrVSrc[j][i / 2]);
|
|
|
|
V = vec_mradds(X, CCoeffs[j], V);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* scale and clip signals */
|
|
|
|
Y0 = vec_sra(Y0, SCL);
|
|
|
|
Y1 = vec_sra(Y1, SCL);
|
|
|
|
U = vec_sra(U, SCL);
|
|
|
|
V = vec_sra(V, SCL);
|
|
|
|
|
|
|
|
Y0 = vec_clip_s16(Y0);
|
|
|
|
Y1 = vec_clip_s16(Y1);
|
|
|
|
U = vec_clip_s16(U);
|
|
|
|
V = vec_clip_s16(V);
|
|
|
|
|
|
|
|
/* now we have
|
|
|
|
* Y0 = y0 y1 y2 y3 y4 y5 y6 y7 Y1 = y8 y9 y10 y11 y12 y13 y14 y15
|
|
|
|
* U = u0 u1 u2 u3 u4 u5 u6 u7 V = v0 v1 v2 v3 v4 v5 v6 v7
|
|
|
|
*
|
|
|
|
* Y0 = y0 y1 y2 y3 y4 y5 y6 y7 Y1 = y8 y9 y10 y11 y12 y13 y14 y15
|
|
|
|
* U0 = u0 u0 u1 u1 u2 u2 u3 u3 U1 = u4 u4 u5 u5 u6 u6 u7 u7
|
|
|
|
* V0 = v0 v0 v1 v1 v2 v2 v3 v3 V1 = v4 v4 v5 v5 v6 v6 v7 v7
|
|
|
|
*/
|
|
|
|
|
|
|
|
U0 = vec_mergeh(U, U);
|
|
|
|
V0 = vec_mergeh(V, V);
|
|
|
|
|
|
|
|
U1 = vec_mergel(U, U);
|
|
|
|
V1 = vec_mergel(V, V);
|
|
|
|
|
|
|
|
cvtyuvtoRGB(c, Y0, U0, V0, &R0, &G0, &B0);
|
|
|
|
cvtyuvtoRGB(c, Y1, U1, V1, &R1, &G1, &B1);
|
|
|
|
|
|
|
|
R = vec_packclp(R0, R1);
|
|
|
|
G = vec_packclp(G0, G1);
|
|
|
|
B = vec_packclp(B0, B1);
|
|
|
|
|
|
|
|
switch (target) {
|
|
|
|
case AV_PIX_FMT_ABGR:
|
|
|
|
out_abgr(R, G, B, out);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_BGRA:
|
|
|
|
out_bgra(R, G, B, out);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_RGBA:
|
|
|
|
out_rgba(R, G, B, out);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_ARGB:
|
|
|
|
out_argb(R, G, B, out);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_RGB24:
|
|
|
|
out_rgb24(R, G, B, out);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_BGR24:
|
|
|
|
out_bgr24(R, G, B, out);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
/* If this is reached, the caller should have called yuv2packedXinC
|
|
|
|
* instead. */
|
|
|
|
static int printed_error_message;
|
|
|
|
if (!printed_error_message) {
|
|
|
|
av_log(c, AV_LOG_ERROR,
|
|
|
|
"altivec_yuv2packedX doesn't support %s output\n",
|
|
|
|
av_get_pix_fmt_name(c->opts.dst_format));
|
|
|
|
printed_error_message = 1;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i < dstW) {
|
|
|
|
i -= 16;
|
|
|
|
|
|
|
|
Y0 = RND;
|
|
|
|
Y1 = RND;
|
|
|
|
/* extract 16 coeffs from lumSrc */
|
|
|
|
for (j = 0; j < lumFilterSize; j++) {
|
|
|
|
X0 = vec_ld(0, &lumSrc[j][i]);
|
|
|
|
X1 = vec_ld(16, &lumSrc[j][i]);
|
|
|
|
Y0 = vec_mradds(X0, YCoeffs[j], Y0);
|
|
|
|
Y1 = vec_mradds(X1, YCoeffs[j], Y1);
|
|
|
|
}
|
|
|
|
|
|
|
|
U = RND;
|
|
|
|
V = RND;
|
|
|
|
/* extract 8 coeffs from U,V */
|
|
|
|
for (j = 0; j < chrFilterSize; j++) {
|
|
|
|
X = vec_ld(0, &chrUSrc[j][i / 2]);
|
|
|
|
U = vec_mradds(X, CCoeffs[j], U);
|
|
|
|
X = vec_ld(0, &chrVSrc[j][i / 2]);
|
|
|
|
V = vec_mradds(X, CCoeffs[j], V);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* scale and clip signals */
|
|
|
|
Y0 = vec_sra(Y0, SCL);
|
|
|
|
Y1 = vec_sra(Y1, SCL);
|
|
|
|
U = vec_sra(U, SCL);
|
|
|
|
V = vec_sra(V, SCL);
|
|
|
|
|
|
|
|
Y0 = vec_clip_s16(Y0);
|
|
|
|
Y1 = vec_clip_s16(Y1);
|
|
|
|
U = vec_clip_s16(U);
|
|
|
|
V = vec_clip_s16(V);
|
|
|
|
|
|
|
|
/* now we have
|
|
|
|
* Y0 = y0 y1 y2 y3 y4 y5 y6 y7 Y1 = y8 y9 y10 y11 y12 y13 y14 y15
|
|
|
|
* U = u0 u1 u2 u3 u4 u5 u6 u7 V = v0 v1 v2 v3 v4 v5 v6 v7
|
|
|
|
*
|
|
|
|
* Y0 = y0 y1 y2 y3 y4 y5 y6 y7 Y1 = y8 y9 y10 y11 y12 y13 y14 y15
|
|
|
|
* U0 = u0 u0 u1 u1 u2 u2 u3 u3 U1 = u4 u4 u5 u5 u6 u6 u7 u7
|
|
|
|
* V0 = v0 v0 v1 v1 v2 v2 v3 v3 V1 = v4 v4 v5 v5 v6 v6 v7 v7
|
|
|
|
*/
|
|
|
|
|
|
|
|
U0 = vec_mergeh(U, U);
|
|
|
|
V0 = vec_mergeh(V, V);
|
|
|
|
|
|
|
|
U1 = vec_mergel(U, U);
|
|
|
|
V1 = vec_mergel(V, V);
|
|
|
|
|
|
|
|
cvtyuvtoRGB(c, Y0, U0, V0, &R0, &G0, &B0);
|
|
|
|
cvtyuvtoRGB(c, Y1, U1, V1, &R1, &G1, &B1);
|
|
|
|
|
|
|
|
R = vec_packclp(R0, R1);
|
|
|
|
G = vec_packclp(G0, G1);
|
|
|
|
B = vec_packclp(B0, B1);
|
|
|
|
|
|
|
|
nout = (vector unsigned char *) scratch;
|
|
|
|
switch (target) {
|
|
|
|
case AV_PIX_FMT_ABGR:
|
|
|
|
out_abgr(R, G, B, nout);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_BGRA:
|
|
|
|
out_bgra(R, G, B, nout);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_RGBA:
|
|
|
|
out_rgba(R, G, B, nout);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_ARGB:
|
|
|
|
out_argb(R, G, B, nout);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_RGB24:
|
|
|
|
out_rgb24(R, G, B, nout);
|
|
|
|
break;
|
|
|
|
case AV_PIX_FMT_BGR24:
|
|
|
|
out_bgr24(R, G, B, nout);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
/* Unreachable, I think. */
|
|
|
|
av_log(c, AV_LOG_ERROR,
|
|
|
|
"altivec_yuv2packedX doesn't support %s output\n",
|
|
|
|
av_get_pix_fmt_name(c->opts.dst_format));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(&((uint32_t *) dest)[i], scratch, (dstW - i) / 4);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define YUV2PACKEDX_WRAPPER(suffix, pixfmt) \
|
swscale: rename SwsContext to SwsInternal
And preserve the public SwsContext as separate name. The motivation here
is that I want to turn SwsContext into a public struct, while keeping the
internal implementation hidden. Additionally, I also want to be able to
use multiple internal implementations, e.g. for GPU devices.
This commit does not include any functional changes. For the most part, it is
a simple rename. The only complications arise from the public facing API
functions, which preserve their current type (and hence require an additional
unwrapping step internally), and the checkasm test framework, which directly
accesses SwsInternal.
For consistency, the affected functions that need to maintain a distionction
have generally been changed to refer to the SwsContext as *sws, and the
SwsInternal as *c.
In an upcoming commit, I will provide a backing definition for the public
SwsContext, and update `sws_internal()` to dereference the internal struct
instead of merely casting it.
Sponsored-by: Sovereign Tech Fund
Signed-off-by: Niklas Haas <git@haasn.dev>
3 months ago
|
|
|
void ff_yuv2 ## suffix ## _X_altivec(SwsInternal *c, \
|
|
|
|
const int16_t *lumFilter, \
|
|
|
|
const int16_t **lumSrc, \
|
|
|
|
int lumFilterSize, \
|
|
|
|
const int16_t *chrFilter, \
|
|
|
|
const int16_t **chrUSrc, \
|
|
|
|
const int16_t **chrVSrc, \
|
|
|
|
int chrFilterSize, \
|
|
|
|
const int16_t **alpSrc, \
|
|
|
|
uint8_t *dest, int dstW, int dstY) \
|
|
|
|
{ \
|
|
|
|
yuv2packedX_altivec(c, lumFilter, lumSrc, lumFilterSize, \
|
|
|
|
chrFilter, chrUSrc, chrVSrc, \
|
|
|
|
chrFilterSize, alpSrc, \
|
|
|
|
dest, dstW, dstY, pixfmt); \
|
|
|
|
}
|
|
|
|
|
|
|
|
YUV2PACKEDX_WRAPPER(abgr, AV_PIX_FMT_ABGR);
|
|
|
|
YUV2PACKEDX_WRAPPER(bgra, AV_PIX_FMT_BGRA);
|
|
|
|
YUV2PACKEDX_WRAPPER(argb, AV_PIX_FMT_ARGB);
|
|
|
|
YUV2PACKEDX_WRAPPER(rgba, AV_PIX_FMT_RGBA);
|
|
|
|
YUV2PACKEDX_WRAPPER(rgb24, AV_PIX_FMT_RGB24);
|
|
|
|
YUV2PACKEDX_WRAPPER(bgr24, AV_PIX_FMT_BGR24);
|
|
|
|
|
|
|
|
#endif /* HAVE_ALTIVEC */
|