|
|
|
/*
|
|
|
|
* AC-3 Audio Decoder
|
|
|
|
* This code is developed as part of Google Summer of Code 2006 Program.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
|
|
|
|
* Copyright (c) 2007 Justin Ruggles
|
|
|
|
*
|
|
|
|
* Portions of this code are derived from liba52
|
|
|
|
* http://liba52.sourceforge.net
|
|
|
|
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
|
|
|
|
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "avcodec.h"
|
|
|
|
#include "ac3_parser.h"
|
|
|
|
#include "bitstream.h"
|
|
|
|
#include "dsputil.h"
|
|
|
|
#include "random.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Table of bin locations for rematrixing bands
|
|
|
|
* reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
|
|
|
|
*/
|
|
|
|
static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
|
|
|
|
|
|
|
|
/* table for exponent to scale_factor mapping
|
|
|
|
* scale_factor[i] = 2 ^ -(i + 15)
|
|
|
|
*/
|
|
|
|
static float scale_factors[25];
|
|
|
|
|
|
|
|
/** table for grouping exponents */
|
|
|
|
static uint8_t exp_ungroup_tbl[128][3];
|
|
|
|
|
|
|
|
|
|
|
|
/** tables for ungrouping mantissas */
|
|
|
|
static float b1_mantissas[32][3];
|
|
|
|
static float b2_mantissas[128][3];
|
|
|
|
static float b3_mantissas[8];
|
|
|
|
static float b4_mantissas[128][2];
|
|
|
|
static float b5_mantissas[16];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Quantization table: levels for symmetric. bits for asymmetric.
|
|
|
|
* reference: Table 7.18 Mapping of bap to Quantizer
|
|
|
|
*/
|
|
|
|
static const uint8_t qntztab[16] = {
|
|
|
|
0, 3, 5, 7, 11, 15,
|
|
|
|
5, 6, 7, 8, 9, 10, 11, 12, 14, 16
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Adjustmens in dB gain */
|
|
|
|
#define LEVEL_MINUS_3DB 0.7071067811865476
|
|
|
|
#define LEVEL_MINUS_4POINT5DB 0.5946035575013605
|
|
|
|
#define LEVEL_MINUS_6DB 0.5000000000000000
|
|
|
|
#define LEVEL_PLUS_3DB 1.4142135623730951
|
|
|
|
#define LEVEL_PLUS_6DB 2.0000000000000000
|
|
|
|
#define LEVEL_ZERO 0.0000000000000000
|
|
|
|
|
|
|
|
static const float clevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_4POINT5DB,
|
|
|
|
LEVEL_MINUS_6DB, LEVEL_MINUS_4POINT5DB };
|
|
|
|
|
|
|
|
static const float slevs[4] = { LEVEL_MINUS_3DB, LEVEL_MINUS_6DB, LEVEL_ZERO, LEVEL_MINUS_6DB };
|
|
|
|
|
|
|
|
#define AC3_OUTPUT_LFEON 8
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
int acmod;
|
|
|
|
int cmixlev;
|
|
|
|
int surmixlev;
|
|
|
|
int dsurmod;
|
|
|
|
|
|
|
|
int blksw[AC3_MAX_CHANNELS];
|
|
|
|
int dithflag[AC3_MAX_CHANNELS];
|
|
|
|
int dither_all;
|
|
|
|
int cplinu;
|
|
|
|
int chincpl[AC3_MAX_CHANNELS];
|
|
|
|
int phsflginu;
|
|
|
|
int cplcoe;
|
|
|
|
uint32_t cplbndstrc;
|
|
|
|
int rematstr;
|
|
|
|
int nrematbnd;
|
|
|
|
int rematflg[AC3_MAX_CHANNELS];
|
|
|
|
int cplexpstr;
|
|
|
|
int lfeexpstr;
|
|
|
|
int chexpstr[5];
|
|
|
|
int cplsnroffst;
|
|
|
|
int cplfgain;
|
|
|
|
int snroffst[5];
|
|
|
|
int fgain[5];
|
|
|
|
int lfesnroffst;
|
|
|
|
int lfefgain;
|
|
|
|
int cpldeltbae;
|
|
|
|
int deltbae[5];
|
|
|
|
int cpldeltnseg;
|
|
|
|
uint8_t cpldeltoffst[8];
|
|
|
|
uint8_t cpldeltlen[8];
|
|
|
|
uint8_t cpldeltba[8];
|
|
|
|
int deltnseg[5];
|
|
|
|
uint8_t deltoffst[5][8];
|
|
|
|
uint8_t deltlen[5][8];
|
|
|
|
uint8_t deltba[5][8];
|
|
|
|
|
|
|
|
/* Derived Attributes. */
|
|
|
|
int sampling_rate;
|
|
|
|
int bit_rate;
|
|
|
|
int frame_size;
|
|
|
|
|
|
|
|
int nchans; //number of total channels
|
|
|
|
int nfchans; //number of full-bandwidth channels
|
|
|
|
int lfeon; //lfe channel in use
|
|
|
|
int output_mode; ///< output channel configuration
|
|
|
|
int out_channels; ///< number of output channels
|
|
|
|
|
|
|
|
float dynrng; //dynamic range gain
|
|
|
|
float dynrng2; //dynamic range gain for 1+1 mode
|
|
|
|
float cplco[5][18]; //coupling coordinates
|
|
|
|
int ncplbnd; //number of coupling bands
|
|
|
|
int ncplsubnd; //number of coupling sub bands
|
|
|
|
int cplstrtmant; //coupling start mantissa
|
|
|
|
int cplendmant; //coupling end mantissa
|
|
|
|
int endmant[5]; //channel end mantissas
|
|
|
|
AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
|
|
|
|
|
|
|
|
int8_t dcplexps[256]; //decoded coupling exponents
|
|
|
|
int8_t dexps[5][256]; //decoded fbw channel exponents
|
|
|
|
int8_t dlfeexps[256]; //decoded lfe channel exponents
|
|
|
|
uint8_t cplbap[256]; //coupling bit allocation pointers
|
|
|
|
uint8_t bap[5][256]; //fbw channel bit allocation pointers
|
|
|
|
uint8_t lfebap[256]; //lfe channel bit allocation pointers
|
|
|
|
|
|
|
|
float transform_coeffs_cpl[256];
|
|
|
|
DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); //transform coefficients
|
|
|
|
|
|
|
|
/* For IMDCT. */
|
|
|
|
MDCTContext imdct_512; //for 512 sample imdct transform
|
|
|
|
MDCTContext imdct_256; //for 256 sample imdct transform
|
|
|
|
DSPContext dsp; //for optimization
|
|
|
|
|
|
|
|
DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS][256]); //output after imdct transform and windowing
|
|
|
|
DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS][256]); //delay - added to the next block
|
|
|
|
DECLARE_ALIGNED_16(float, tmp_imdct[256]); //temporary storage for imdct transform
|
|
|
|
DECLARE_ALIGNED_16(float, tmp_output[512]); //temporary storage for output before windowing
|
|
|
|
DECLARE_ALIGNED_16(float, window[256]); //window coefficients
|
|
|
|
|
|
|
|
/* Miscellaneous. */
|
|
|
|
GetBitContext gb;
|
|
|
|
AVRandomState dith_state; //for dither generation
|
|
|
|
} AC3DecodeContext;
|
|
|
|
|
|
|
|
/*********** BEGIN INIT HELPER FUNCTIONS ***********/
|
|
|
|
/**
|
|
|
|
* Generate a Kaiser-Bessel Derived Window.
|
|
|
|
*/
|
|
|
|
static void ac3_window_init(float *window)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
double sum = 0.0, bessel, tmp;
|
|
|
|
double local_window[256];
|
|
|
|
double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
|
|
|
|
|
|
|
|
for (i = 0; i < 256; i++) {
|
|
|
|
tmp = i * (256 - i) * alpha2;
|
|
|
|
bessel = 1.0;
|
|
|
|
for (j = 100; j > 0; j--) /* defaul to 100 iterations */
|
|
|
|
bessel = bessel * tmp / (j * j) + 1;
|
|
|
|
sum += bessel;
|
|
|
|
local_window[i] = sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
sum++;
|
|
|
|
for (i = 0; i < 256; i++)
|
|
|
|
window[i] = sqrt(local_window[i] / sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline float
|
|
|
|
symmetric_dequant(int code, int levels)
|
|
|
|
{
|
|
|
|
return (code - (levels >> 1)) * (2.0f / levels);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize tables at runtime.
|
|
|
|
*/
|
|
|
|
static void ac3_tables_init(void)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* generate grouped mantissa tables
|
|
|
|
reference: Section 7.3.5 Ungrouping of Mantissas */
|
|
|
|
for(i=0; i<32; i++) {
|
|
|
|
/* bap=1 mantissas */
|
|
|
|
b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
|
|
|
|
b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
|
|
|
|
b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
|
|
|
|
}
|
|
|
|
for(i=0; i<128; i++) {
|
|
|
|
/* bap=2 mantissas */
|
|
|
|
b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
|
|
|
|
b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
|
|
|
|
b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
|
|
|
|
|
|
|
|
/* bap=4 mantissas */
|
|
|
|
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
|
|
|
|
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
|
|
|
|
}
|
|
|
|
/* generate ungrouped mantissa tables
|
|
|
|
reference: Tables 7.21 and 7.23 */
|
|
|
|
for(i=0; i<7; i++) {
|
|
|
|
/* bap=3 mantissas */
|
|
|
|
b3_mantissas[i] = symmetric_dequant(i, 7);
|
|
|
|
}
|
|
|
|
for(i=0; i<15; i++) {
|
|
|
|
/* bap=5 mantissas */
|
|
|
|
b5_mantissas[i] = symmetric_dequant(i, 15);
|
|
|
|
}
|
|
|
|
|
|
|
|
//generate scale factors
|
|
|
|
for (i = 0; i < 25; i++)
|
|
|
|
scale_factors[i] = pow(2.0, -i);
|
|
|
|
|
|
|
|
/* generate exponent tables
|
|
|
|
reference: Section 7.1.3 Exponent Decoding */
|
|
|
|
for(i=0; i<128; i++) {
|
|
|
|
exp_ungroup_tbl[i][0] = i / 25;
|
|
|
|
exp_ungroup_tbl[i][1] = (i % 25) / 5;
|
|
|
|
exp_ungroup_tbl[i][2] = (i % 25) % 5;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int ac3_decode_init(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
AC3DecodeContext *ctx = avctx->priv_data;
|
|
|
|
|
|
|
|
ac3_common_init();
|
|
|
|
ac3_tables_init();
|
|
|
|
ff_mdct_init(&ctx->imdct_256, 8, 1);
|
|
|
|
ff_mdct_init(&ctx->imdct_512, 9, 1);
|
|
|
|
ac3_window_init(ctx->window);
|
|
|
|
dsputil_init(&ctx->dsp, avctx);
|
|
|
|
av_init_random(0, &ctx->dith_state);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/*********** END INIT FUNCTIONS ***********/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
|
|
|
|
* GetBitContext within AC3DecodeContext must point to
|
|
|
|
* start of the synchronized ac3 bitstream.
|
|
|
|
*/
|
|
|
|
static int ac3_parse_header(AC3DecodeContext *ctx)
|
|
|
|
{
|
|
|
|
AC3HeaderInfo hdr;
|
|
|
|
GetBitContext *gb = &ctx->gb;
|
|
|
|
int err, i;
|
|
|
|
|
|
|
|
err = ff_ac3_parse_header(gb->buffer, &hdr);
|
|
|
|
if(err)
|
|
|
|
return err;
|
|
|
|
|
|
|
|
/* get decoding parameters from header info */
|
|
|
|
ctx->bit_alloc_params.fscod = hdr.fscod;
|
|
|
|
ctx->acmod = hdr.acmod;
|
|
|
|
ctx->cmixlev = hdr.cmixlev;
|
|
|
|
ctx->surmixlev = hdr.surmixlev;
|
|
|
|
ctx->dsurmod = hdr.dsurmod;
|
|
|
|
ctx->lfeon = hdr.lfeon;
|
|
|
|
ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
|
|
|
|
ctx->sampling_rate = hdr.sample_rate;
|
|
|
|
ctx->bit_rate = hdr.bit_rate;
|
|
|
|
ctx->nchans = hdr.channels;
|
|
|
|
ctx->nfchans = ctx->nchans - ctx->lfeon;
|
|
|
|
ctx->frame_size = hdr.frame_size;
|
|
|
|
|
|
|
|
/* set default output to all source channels */
|
|
|
|
ctx->out_channels = ctx->nchans;
|
|
|
|
ctx->output_mode = ctx->acmod;
|
|
|
|
if(ctx->lfeon)
|
|
|
|
ctx->output_mode |= AC3_OUTPUT_LFEON;
|
|
|
|
|
|
|
|
/* skip over portion of header which has already been read */
|
|
|
|
skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
|
|
|
|
skip_bits(gb, 16); // skip crc1
|
|
|
|
skip_bits(gb, 8); // skip fscod and frmsizecod
|
|
|
|
skip_bits(gb, 11); // skip bsid, bsmod, and acmod
|
|
|
|
if(ctx->acmod == AC3_ACMOD_STEREO) {
|
|
|
|
skip_bits(gb, 2); // skip dsurmod
|
|
|
|
} else {
|
|
|
|
if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
|
|
|
|
skip_bits(gb, 2); // skip cmixlev
|
|
|
|
if(ctx->acmod & 4)
|
|
|
|
skip_bits(gb, 2); // skip surmixlev
|
|
|
|
}
|
|
|
|
skip_bits1(gb); // skip lfeon
|
|
|
|
|
|
|
|
/* read the rest of the bsi. read twice for dual mono mode. */
|
|
|
|
i = !(ctx->acmod);
|
|
|
|
do {
|
|
|
|
skip_bits(gb, 5); //skip dialog normalization
|
|
|
|
if (get_bits1(gb))
|
|
|
|
skip_bits(gb, 8); //skip compression
|
|
|
|
if (get_bits1(gb))
|
|
|
|
skip_bits(gb, 8); //skip language code
|
|
|
|
if (get_bits1(gb))
|
|
|
|
skip_bits(gb, 7); //skip audio production information
|
|
|
|
} while (i--);
|
|
|
|
|
|
|
|
skip_bits(gb, 2); //skip copyright bit and original bitstream bit
|
|
|
|
|
|
|
|
/* FIXME: read & use the xbsi1 downmix levels */
|
|
|
|
if (get_bits1(gb))
|
|
|
|
skip_bits(gb, 14); //skip timecode1
|
|
|
|
if (get_bits1(gb))
|
|
|
|
skip_bits(gb, 14); //skip timecode2
|
|
|
|
|
|
|
|
if (get_bits1(gb)) {
|
|
|
|
i = get_bits(gb, 6); //additional bsi length
|
|
|
|
do {
|
|
|
|
skip_bits(gb, 8);
|
|
|
|
} while(i--);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Decodes the grouped exponents.
|
|
|
|
* This function decodes the coded exponents according to exponent strategy
|
|
|
|
* and stores them in the decoded exponents buffer.
|
|
|
|
*
|
|
|
|
* @param[in] gb GetBitContext which points to start of coded exponents
|
|
|
|
* @param[in] expstr Exponent coding strategy
|
|
|
|
* @param[in] ngrps Number of grouped exponents
|
|
|
|
* @param[in] absexp Absolute exponent or DC exponent
|
|
|
|
* @param[out] dexps Decoded exponents are stored in dexps
|
|
|
|
*/
|
|
|
|
static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
|
|
|
|
uint8_t absexp, int8_t *dexps)
|
|
|
|
{
|
|
|
|
int i, j, grp, grpsize;
|
|
|
|
int dexp[256];
|
|
|
|
int expacc, prevexp;
|
|
|
|
|
|
|
|
/* unpack groups */
|
|
|
|
grpsize = expstr + (expstr == EXP_D45);
|
|
|
|
for(grp=0,i=0; grp<ngrps; grp++) {
|
|
|
|
expacc = get_bits(gb, 7);
|
|
|
|
dexp[i++] = exp_ungroup_tbl[expacc][0];
|
|
|
|
dexp[i++] = exp_ungroup_tbl[expacc][1];
|
|
|
|
dexp[i++] = exp_ungroup_tbl[expacc][2];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* convert to absolute exps and expand groups */
|
|
|
|
prevexp = absexp;
|
|
|
|
for(i=0; i<ngrps*3; i++) {
|
|
|
|
prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
|
|
|
|
for(j=0; j<grpsize; j++) {
|
|
|
|
dexps[(i*grpsize)+j] = prevexp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Generates transform coefficients for each coupled channel in the coupling
|
|
|
|
* range using the coupling coefficients and coupling coordinates.
|
|
|
|
* reference: Section 7.4.3 Coupling Coordinate Format
|
|
|
|
*/
|
|
|
|
static void uncouple_channels(AC3DecodeContext *ctx)
|
|
|
|
{
|
|
|
|
int i, j, ch, bnd, subbnd;
|
|
|
|
|
|
|
|
subbnd = -1;
|
|
|
|
i = ctx->cplstrtmant;
|
|
|
|
for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
|
|
|
|
do {
|
|
|
|
subbnd++;
|
|
|
|
for(j=0; j<12; j++) {
|
|
|
|
for(ch=1; ch<=ctx->nfchans; ch++) {
|
|
|
|
if(ctx->chincpl[ch-1])
|
|
|
|
ctx->transform_coeffs[ch][i] = ctx->transform_coeffs_cpl[i] * ctx->cplco[ch-1][bnd] * 8.0f;
|
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
} while((ctx->cplbndstrc >> subbnd) & 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
|
|
|
|
float b1_mant[3];
|
|
|
|
float b2_mant[3];
|
|
|
|
float b4_mant[2];
|
|
|
|
int b1ptr;
|
|
|
|
int b2ptr;
|
|
|
|
int b4ptr;
|
|
|
|
} mant_groups;
|
|
|
|
|
|
|
|
/* Get the transform coefficients for particular channel */
|
|
|
|
static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
|
|
|
|
{
|
|
|
|
GetBitContext *gb = &ctx->gb;
|
|
|
|
int i, gcode, tbap, start, end;
|
|
|
|
uint8_t *exps;
|
|
|
|
uint8_t *bap;
|
|
|
|
float *coeffs;
|
|
|
|
|
|
|
|
if (ch_index >= 0) { /* fbw channels */
|
|
|
|
exps = ctx->dexps[ch_index];
|
|
|
|
bap = ctx->bap[ch_index];
|
|
|
|
coeffs = ctx->transform_coeffs[ch_index + 1];
|
|
|
|
start = 0;
|
|
|
|
end = ctx->endmant[ch_index];
|
|
|
|
} else if (ch_index == -1) {
|
|
|
|
exps = ctx->dlfeexps;
|
|
|
|
bap = ctx->lfebap;
|
|
|
|
coeffs = ctx->transform_coeffs[0];
|
|
|
|
start = 0;
|
|
|
|
end = 7;
|
|
|
|
} else {
|
|
|
|
exps = ctx->dcplexps;
|
|
|
|
bap = ctx->cplbap;
|
|
|
|
coeffs = ctx->transform_coeffs_cpl;
|
|
|
|
start = ctx->cplstrtmant;
|
|
|
|
end = ctx->cplendmant;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
for (i = start; i < end; i++) {
|
|
|
|
tbap = bap[i];
|
|
|
|
switch (tbap) {
|
|
|
|
case 0:
|
|
|
|
coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 1:
|
|
|
|
if(m->b1ptr > 2) {
|
|
|
|
gcode = get_bits(gb, 5);
|
|
|
|
m->b1_mant[0] = b1_mantissas[gcode][0];
|
|
|
|
m->b1_mant[1] = b1_mantissas[gcode][1];
|
|
|
|
m->b1_mant[2] = b1_mantissas[gcode][2];
|
|
|
|
m->b1ptr = 0;
|
|
|
|
}
|
|
|
|
coeffs[i] = m->b1_mant[m->b1ptr++];
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 2:
|
|
|
|
if(m->b2ptr > 2) {
|
|
|
|
gcode = get_bits(gb, 7);
|
|
|
|
m->b2_mant[0] = b2_mantissas[gcode][0];
|
|
|
|
m->b2_mant[1] = b2_mantissas[gcode][1];
|
|
|
|
m->b2_mant[2] = b2_mantissas[gcode][2];
|
|
|
|
m->b2ptr = 0;
|
|
|
|
}
|
|
|
|
coeffs[i] = m->b2_mant[m->b2ptr++];
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 3:
|
|
|
|
coeffs[i] = b3_mantissas[get_bits(gb, 3)];
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 4:
|
|
|
|
if(m->b4ptr > 1) {
|
|
|
|
gcode = get_bits(gb, 7);
|
|
|
|
m->b4_mant[0] = b4_mantissas[gcode][0];
|
|
|
|
m->b4_mant[1] = b4_mantissas[gcode][1];
|
|
|
|
m->b4ptr = 0;
|
|
|
|
}
|
|
|
|
coeffs[i] = m->b4_mant[m->b4ptr++];
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 5:
|
|
|
|
coeffs[i] = b5_mantissas[get_bits(gb, 4)];
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
coeffs[i] *= scale_factors[exps[i]];
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Removes random dithering from coefficients with zero-bit mantissas
|
|
|
|
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
|
|
|
|
*/
|
|
|
|
static void remove_dithering(AC3DecodeContext *ctx) {
|
|
|
|
int ch, i;
|
|
|
|
int end=0;
|
|
|
|
float *coeffs;
|
|
|
|
uint8_t *bap;
|
|
|
|
|
|
|
|
for(ch=1; ch<=ctx->nfchans; ch++) {
|
|
|
|
if(!ctx->dithflag[ch-1]) {
|
|
|
|
coeffs = ctx->transform_coeffs[ch];
|
|
|
|
bap = ctx->bap[ch-1];
|
|
|
|
if(ctx->chincpl[ch-1])
|
|
|
|
end = ctx->cplstrtmant;
|
|
|
|
else
|
|
|
|
end = ctx->endmant[ch-1];
|
|
|
|
for(i=0; i<end; i++) {
|
|
|
|
if(bap[i] == 0)
|
|
|
|
coeffs[i] = 0.0f;
|
|
|
|
}
|
|
|
|
if(ctx->chincpl[ch-1]) {
|
|
|
|
bap = ctx->cplbap;
|
|
|
|
for(; i<ctx->cplendmant; i++) {
|
|
|
|
if(bap[i] == 0)
|
|
|
|
coeffs[i] = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Get the transform coefficients.
|
|
|
|
* This function extracts the tranform coefficients form the ac3 bitstream.
|
|
|
|
* This function is called after bit allocation is performed.
|
|
|
|
*/
|
|
|
|
static int get_transform_coeffs(AC3DecodeContext * ctx)
|
|
|
|
{
|
|
|
|
int i, end;
|
|
|
|
int got_cplchan = 0;
|
|
|
|
mant_groups m;
|
|
|
|
|
|
|
|
m.b1ptr = m.b2ptr = m.b4ptr = 3;
|
|
|
|
|
|
|
|
for (i = 0; i < ctx->nfchans; i++) {
|
|
|
|
/* transform coefficients for individual channel */
|
|
|
|
if (get_transform_coeffs_ch(ctx, i, &m))
|
|
|
|
return -1;
|
|
|
|
/* tranform coefficients for coupling channels */
|
|
|
|
if (ctx->chincpl[i]) {
|
|
|
|
if (!got_cplchan) {
|
|
|
|
if (get_transform_coeffs_ch(ctx, -2, &m)) {
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
uncouple_channels(ctx);
|
|
|
|
got_cplchan = 1;
|
|
|
|
}
|
|
|
|
end = ctx->cplendmant;
|
|
|
|
} else
|
|
|
|
end = ctx->endmant[i];
|
|
|
|
do
|
|
|
|
ctx->transform_coeffs[i + 1][end] = 0;
|
|
|
|
while(++end < 256);
|
|
|
|
}
|
|
|
|
if (ctx->lfeon) {
|
|
|
|
if (get_transform_coeffs_ch(ctx, -1, &m))
|
|
|
|
return -1;
|
|
|
|
for (i = 7; i < 256; i++) {
|
|
|
|
ctx->transform_coeffs[0][i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if any channel doesn't use dithering, zero appropriate coefficients */
|
|
|
|
if(!ctx->dither_all)
|
|
|
|
remove_dithering(ctx);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Performs stereo rematrixing.
|
|
|
|
* reference: Section 7.5.4 Rematrixing : Decoding Technique
|
|
|
|
*/
|
|
|
|
static void do_rematrixing(AC3DecodeContext *ctx)
|
|
|
|
{
|
|
|
|
int bnd, i;
|
|
|
|
int end, bndend;
|
|
|
|
float tmp0, tmp1;
|
|
|
|
|
|
|
|
end = FFMIN(ctx->endmant[0], ctx->endmant[1]);
|
|
|
|
|
|
|
|
for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
|
|
|
|
if(ctx->rematflg[bnd]) {
|
|
|
|
bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
|
|
|
|
for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
|
|
|
|
tmp0 = ctx->transform_coeffs[1][i];
|
|
|
|
tmp1 = ctx->transform_coeffs[2][i];
|
|
|
|
ctx->transform_coeffs[1][i] = tmp0 + tmp1;
|
|
|
|
ctx->transform_coeffs[2][i] = tmp0 - tmp1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* This function performs the imdct on 256 sample transform
|
|
|
|
* coefficients.
|
|
|
|
*/
|
|
|
|
static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
|
|
|
|
{
|
|
|
|
int i, k;
|
|
|
|
DECLARE_ALIGNED_16(float, x[128]);
|
|
|
|
FFTComplex z[2][64];
|
|
|
|
float *o_ptr = ctx->tmp_output;
|
|
|
|
|
|
|
|
for(i=0; i<2; i++) {
|
|
|
|
/* de-interleave coefficients */
|
|
|
|
for(k=0; k<128; k++) {
|
|
|
|
x[k] = ctx->transform_coeffs[chindex][2*k+i];
|
|
|
|
}
|
|
|
|
|
|
|
|
/* run standard IMDCT */
|
|
|
|
ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
|
|
|
|
|
|
|
|
/* reverse the post-rotation & reordering from standard IMDCT */
|
|
|
|
for(k=0; k<32; k++) {
|
|
|
|
z[i][32+k].re = -o_ptr[128+2*k];
|
|
|
|
z[i][32+k].im = -o_ptr[2*k];
|
|
|
|
z[i][31-k].re = o_ptr[2*k+1];
|
|
|
|
z[i][31-k].im = o_ptr[128+2*k+1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* apply AC-3 post-rotation & reordering */
|
|
|
|
for(k=0; k<64; k++) {
|
|
|
|
o_ptr[ 2*k ] = -z[0][ k].im;
|
|
|
|
o_ptr[ 2*k+1] = z[0][63-k].re;
|
|
|
|
o_ptr[128+2*k ] = -z[0][ k].re;
|
|
|
|
o_ptr[128+2*k+1] = z[0][63-k].im;
|
|
|
|
o_ptr[256+2*k ] = -z[1][ k].re;
|
|
|
|
o_ptr[256+2*k+1] = z[1][63-k].im;
|
|
|
|
o_ptr[384+2*k ] = z[1][ k].im;
|
|
|
|
o_ptr[384+2*k+1] = -z[1][63-k].re;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* IMDCT Transform. */
|
|
|
|
static inline void do_imdct(AC3DecodeContext *ctx)
|
|
|
|
{
|
|
|
|
int ch;
|
|
|
|
|
|
|
|
if (ctx->output_mode & AC3_OUTPUT_LFEON) {
|
|
|
|
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
|
|
|
|
ctx->transform_coeffs[0], ctx->tmp_imdct);
|
|
|
|
ctx->dsp.vector_fmul_add_add(ctx->output[0], ctx->tmp_output,
|
|
|
|
ctx->window, ctx->delay[0], 384, 256, 1);
|
|
|
|
ctx->dsp.vector_fmul_reverse(ctx->delay[0], ctx->tmp_output+256,
|
|
|
|
ctx->window, 256);
|
|
|
|
}
|
|
|
|
for (ch=1; ch<=ctx->nfchans; ch++) {
|
|
|
|
if (ctx->blksw[ch-1])
|
|
|
|
do_imdct_256(ctx, ch);
|
|
|
|
else
|
|
|
|
ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
|
|
|
|
ctx->transform_coeffs[ch],
|
|
|
|
ctx->tmp_imdct);
|
|
|
|
|
|
|
|
ctx->dsp.vector_fmul_add_add(ctx->output[ch], ctx->tmp_output,
|
|
|
|
ctx->window, ctx->delay[ch], 384, 256, 1);
|
|
|
|
ctx->dsp.vector_fmul_reverse(ctx->delay[ch], ctx->tmp_output+256,
|
|
|
|
ctx->window, 256);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Parse the audio block from ac3 bitstream.
|
|
|
|
* This function extract the audio block from the ac3 bitstream
|
|
|
|
* and produces the output for the block. This function must
|
|
|
|
* be called for each of the six audio block in the ac3 bitstream.
|
|
|
|
*/
|
|
|
|
static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
|
|
|
|
{
|
|
|
|
int nfchans = ctx->nfchans;
|
|
|
|
int acmod = ctx->acmod;
|
|
|
|
int i, bnd, seg, grpsize, ch;
|
|
|
|
GetBitContext *gb = &ctx->gb;
|
|
|
|
int bit_alloc_flags = 0;
|
|
|
|
int8_t *dexps;
|
|
|
|
int mstrcplco, cplcoexp, cplcomant;
|
|
|
|
int dynrng, chbwcod, ngrps, cplabsexp, skipl;
|
|
|
|
|
|
|
|
for (i = 0; i < nfchans; i++) /*block switch flag */
|
|
|
|
ctx->blksw[i] = get_bits1(gb);
|
|
|
|
|
|
|
|
ctx->dither_all = 1;
|
|
|
|
for (i = 0; i < nfchans; i++) { /* dithering flag */
|
|
|
|
ctx->dithflag[i] = get_bits1(gb);
|
|
|
|
if(!ctx->dithflag[i])
|
|
|
|
ctx->dither_all = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (get_bits1(gb)) { /* dynamic range */
|
|
|
|
dynrng = get_sbits(gb, 8);
|
|
|
|
ctx->dynrng = (((dynrng & 0x1f) | 0x20) << 13) * pow(2.0, -(18 - (dynrng >> 5)));
|
|
|
|
} else if(blk == 0) {
|
|
|
|
ctx->dynrng = 1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(acmod == AC3_ACMOD_DUALMONO) { /* dynamic range 1+1 mode */
|
|
|
|
if(get_bits1(gb)) {
|
|
|
|
dynrng = get_sbits(gb, 8);
|
|
|
|
ctx->dynrng2 = (((dynrng & 0x1f) | 0x20) << 13) * pow(2.0, -(18 - (dynrng >> 5)));
|
|
|
|
} else if(blk == 0) {
|
|
|
|
ctx->dynrng2 = 1.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (get_bits1(gb)) { /* coupling strategy */
|
|
|
|
ctx->cplinu = get_bits1(gb);
|
|
|
|
ctx->cplbndstrc = 0;
|
|
|
|
if (ctx->cplinu) { /* coupling in use */
|
|
|
|
int cplbegf, cplendf;
|
|
|
|
|
|
|
|
for (i = 0; i < nfchans; i++)
|
|
|
|
ctx->chincpl[i] = get_bits1(gb);
|
|
|
|
|
|
|
|
if (acmod == AC3_ACMOD_STEREO)
|
|
|
|
ctx->phsflginu = get_bits1(gb); //phase flag in use
|
|
|
|
|
|
|
|
cplbegf = get_bits(gb, 4);
|
|
|
|
cplendf = get_bits(gb, 4);
|
|
|
|
|
|
|
|
if (3 + cplendf - cplbegf < 0) {
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
|
|
|
|
ctx->cplstrtmant = cplbegf * 12 + 37;
|
|
|
|
ctx->cplendmant = cplendf * 12 + 73;
|
|
|
|
for (i = 0; i < ctx->ncplsubnd - 1; i++) /* coupling band structure */
|
|
|
|
if (get_bits1(gb)) {
|
|
|
|
ctx->cplbndstrc |= 1 << i;
|
|
|
|
ctx->ncplbnd--;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < nfchans; i++)
|
|
|
|
ctx->chincpl[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx->cplinu) {
|
|
|
|
ctx->cplcoe = 0;
|
|
|
|
|
|
|
|
for (i = 0; i < nfchans; i++)
|
|
|
|
if (ctx->chincpl[i])
|
|
|
|
if (get_bits1(gb)) { /* coupling co-ordinates */
|
|
|
|
ctx->cplcoe |= 1 << i;
|
|
|
|
mstrcplco = 3 * get_bits(gb, 2);
|
|
|
|
for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
|
|
|
|
cplcoexp = get_bits(gb, 4);
|
|
|
|
cplcomant = get_bits(gb, 4);
|
|
|
|
if (cplcoexp == 15)
|
|
|
|
ctx->cplco[i][bnd] = cplcomant / 16.0f;
|
|
|
|
else
|
|
|
|
ctx->cplco[i][bnd] = (cplcomant + 16.0f) / 32.0f;
|
|
|
|
ctx->cplco[i][bnd] *= scale_factors[cplcoexp + mstrcplco];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && (ctx->cplcoe & 1 || ctx->cplcoe & 2))
|
|
|
|
for (bnd = 0; bnd < ctx->ncplbnd; bnd++)
|
|
|
|
if (get_bits1(gb))
|
|
|
|
ctx->cplco[1][bnd] = -ctx->cplco[1][bnd];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
|
|
|
|
ctx->rematstr = get_bits1(gb);
|
|
|
|
if (ctx->rematstr) {
|
|
|
|
ctx->nrematbnd = 4;
|
|
|
|
if(ctx->cplinu && ctx->cplstrtmant <= 61)
|
|
|
|
ctx->nrematbnd -= 1 + (ctx->cplstrtmant == 37);
|
|
|
|
for(bnd=0; bnd<ctx->nrematbnd; bnd++)
|
|
|
|
ctx->rematflg[bnd] = get_bits1(gb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ctx->cplexpstr = EXP_REUSE;
|
|
|
|
ctx->lfeexpstr = EXP_REUSE;
|
|
|
|
if (ctx->cplinu) /* coupling exponent strategy */
|
|
|
|
ctx->cplexpstr = get_bits(gb, 2);
|
|
|
|
for (i = 0; i < nfchans; i++) /* channel exponent strategy */
|
|
|
|
ctx->chexpstr[i] = get_bits(gb, 2);
|
|
|
|
if (ctx->lfeon) /* lfe exponent strategy */
|
|
|
|
ctx->lfeexpstr = get_bits1(gb);
|
|
|
|
|
|
|
|
for (i = 0; i < nfchans; i++) /* channel bandwidth code */
|
|
|
|
if (ctx->chexpstr[i] != EXP_REUSE) {
|
|
|
|
if (ctx->chincpl[i])
|
|
|
|
ctx->endmant[i] = ctx->cplstrtmant;
|
|
|
|
else {
|
|
|
|
chbwcod = get_bits(gb, 6);
|
|
|
|
if (chbwcod > 60) {
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
ctx->endmant[i] = chbwcod * 3 + 73;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx->cplexpstr != EXP_REUSE) {/* coupling exponents */
|
|
|
|
bit_alloc_flags = 64;
|
|
|
|
cplabsexp = get_bits(gb, 4) << 1;
|
|
|
|
ngrps = (ctx->cplendmant - ctx->cplstrtmant) / (3 << (ctx->cplexpstr - 1));
|
|
|
|
decode_exponents(gb, ctx->cplexpstr, ngrps, cplabsexp, ctx->dcplexps + ctx->cplstrtmant);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < nfchans; i++) /* fbw channel exponents */
|
|
|
|
if (ctx->chexpstr[i] != EXP_REUSE) {
|
|
|
|
bit_alloc_flags |= 1 << i;
|
|
|
|
grpsize = 3 << (ctx->chexpstr[i] - 1);
|
|
|
|
ngrps = (ctx->endmant[i] + grpsize - 4) / grpsize;
|
|
|
|
dexps = ctx->dexps[i];
|
|
|
|
dexps[0] = get_bits(gb, 4);
|
|
|
|
decode_exponents(gb, ctx->chexpstr[i], ngrps, dexps[0], dexps + 1);
|
|
|
|
skip_bits(gb, 2); /* skip gainrng */
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx->lfeexpstr != EXP_REUSE) { /* lfe exponents */
|
|
|
|
bit_alloc_flags |= 32;
|
|
|
|
ctx->dlfeexps[0] = get_bits(gb, 4);
|
|
|
|
decode_exponents(gb, ctx->lfeexpstr, 2, ctx->dlfeexps[0], ctx->dlfeexps + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (get_bits1(gb)) { /* bit allocation information */
|
|
|
|
bit_alloc_flags = 127;
|
|
|
|
ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
|
|
|
|
ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
|
|
|
|
ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)];
|
|
|
|
ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
|
|
|
|
ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (get_bits1(gb)) { /* snroffset */
|
|
|
|
int csnr;
|
|
|
|
bit_alloc_flags = 127;
|
|
|
|
csnr = (get_bits(gb, 6) - 15) << 4;
|
|
|
|
if (ctx->cplinu) { /* coupling fine snr offset and fast gain code */
|
|
|
|
ctx->cplsnroffst = (csnr + get_bits(gb, 4)) << 2;
|
|
|
|
ctx->cplfgain = ff_fgaintab[get_bits(gb, 3)];
|
|
|
|
}
|
|
|
|
for (i = 0; i < nfchans; i++) { /* channel fine snr offset and fast gain code */
|
|
|
|
ctx->snroffst[i] = (csnr + get_bits(gb, 4)) << 2;
|
|
|
|
ctx->fgain[i] = ff_fgaintab[get_bits(gb, 3)];
|
|
|
|
}
|
|
|
|
if (ctx->lfeon) { /* lfe fine snr offset and fast gain code */
|
|
|
|
ctx->lfesnroffst = (csnr + get_bits(gb, 4)) << 2;
|
|
|
|
ctx->lfefgain = ff_fgaintab[get_bits(gb, 3)];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
|
|
|
|
bit_alloc_flags |= 64;
|
|
|
|
ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
|
|
|
|
ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (get_bits1(gb)) { /* delta bit allocation information */
|
|
|
|
bit_alloc_flags = 127;
|
|
|
|
|
|
|
|
if (ctx->cplinu) {
|
|
|
|
ctx->cpldeltbae = get_bits(gb, 2);
|
|
|
|
if (ctx->cpldeltbae == DBA_RESERVED) {
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "coupling delta bit allocation strategy reserved\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < nfchans; i++) {
|
|
|
|
ctx->deltbae[i] = get_bits(gb, 2);
|
|
|
|
if (ctx->deltbae[i] == DBA_RESERVED) {
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctx->cplinu)
|
|
|
|
if (ctx->cpldeltbae == DBA_NEW) { /*coupling delta offset, len and bit allocation */
|
|
|
|
ctx->cpldeltnseg = get_bits(gb, 3);
|
|
|
|
for (seg = 0; seg <= ctx->cpldeltnseg; seg++) {
|
|
|
|
ctx->cpldeltoffst[seg] = get_bits(gb, 5);
|
|
|
|
ctx->cpldeltlen[seg] = get_bits(gb, 4);
|
|
|
|
ctx->cpldeltba[seg] = get_bits(gb, 3);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < nfchans; i++)
|
|
|
|
if (ctx->deltbae[i] == DBA_NEW) {/*channel delta offset, len and bit allocation */
|
|
|
|
ctx->deltnseg[i] = get_bits(gb, 3);
|
|
|
|
for (seg = 0; seg <= ctx->deltnseg[i]; seg++) {
|
|
|
|
ctx->deltoffst[i][seg] = get_bits(gb, 5);
|
|
|
|
ctx->deltlen[i][seg] = get_bits(gb, 4);
|
|
|
|
ctx->deltba[i][seg] = get_bits(gb, 3);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if(blk == 0) {
|
|
|
|
if(ctx->cplinu)
|
|
|
|
ctx->cpldeltbae = DBA_NONE;
|
|
|
|
for(i=0; i<nfchans; i++) {
|
|
|
|
ctx->deltbae[i] = DBA_NONE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (bit_alloc_flags) {
|
|
|
|
if (ctx->cplinu && (bit_alloc_flags & 64))
|
|
|
|
ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->cplbap,
|
|
|
|
ctx->dcplexps, ctx->cplstrtmant,
|
|
|
|
ctx->cplendmant, ctx->cplsnroffst,
|
|
|
|
ctx->cplfgain, 0,
|
|
|
|
ctx->cpldeltbae, ctx->cpldeltnseg,
|
|
|
|
ctx->cpldeltoffst, ctx->cpldeltlen,
|
|
|
|
ctx->cpldeltba);
|
|
|
|
for (i = 0; i < nfchans; i++)
|
|
|
|
if ((bit_alloc_flags >> i) & 1)
|
|
|
|
ac3_parametric_bit_allocation(&ctx->bit_alloc_params,
|
|
|
|
ctx->bap[i], ctx->dexps[i], 0,
|
|
|
|
ctx->endmant[i], ctx->snroffst[i],
|
|
|
|
ctx->fgain[i], 0, ctx->deltbae[i],
|
|
|
|
ctx->deltnseg[i], ctx->deltoffst[i],
|
|
|
|
ctx->deltlen[i], ctx->deltba[i]);
|
|
|
|
if (ctx->lfeon && (bit_alloc_flags & 32))
|
|
|
|
ac3_parametric_bit_allocation(&ctx->bit_alloc_params, ctx->lfebap,
|
|
|
|
ctx->dlfeexps, 0, 7, ctx->lfesnroffst,
|
|
|
|
ctx->lfefgain, 1,
|
|
|
|
DBA_NONE, 0, NULL, NULL, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (get_bits1(gb)) { /* unused dummy data */
|
|
|
|
skipl = get_bits(gb, 9);
|
|
|
|
while(skipl--)
|
|
|
|
skip_bits(gb, 8);
|
|
|
|
}
|
|
|
|
/* unpack the transform coefficients
|
|
|
|
* * this also uncouples channels if coupling is in use.
|
|
|
|
*/
|
|
|
|
if (get_transform_coeffs(ctx)) {
|
|
|
|
av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* recover coefficients if rematrixing is in use */
|
|
|
|
if(ctx->acmod == AC3_ACMOD_STEREO)
|
|
|
|
do_rematrixing(ctx);
|
|
|
|
|
|
|
|
/* apply scaling to coefficients (headroom, dynrng) */
|
|
|
|
if(ctx->lfeon) {
|
|
|
|
for(i=0; i<7; i++) {
|
|
|
|
ctx->transform_coeffs[0][i] *= 2.0f * ctx->dynrng;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(ch=1; ch<=ctx->nfchans; ch++) {
|
|
|
|
float gain = 2.0f;
|
|
|
|
if(ctx->acmod == AC3_ACMOD_DUALMONO && ch == 2) {
|
|
|
|
gain *= ctx->dynrng2;
|
|
|
|
} else {
|
|
|
|
gain *= ctx->dynrng;
|
|
|
|
}
|
|
|
|
for(i=0; i<ctx->endmant[ch-1]; i++) {
|
|
|
|
ctx->transform_coeffs[ch][i] *= gain;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
do_imdct(ctx);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline int16_t convert(int32_t i)
|
|
|
|
{
|
|
|
|
if (i > 0x43c07fff)
|
|
|
|
return 32767;
|
|
|
|
else if (i <= 0x43bf8000)
|
|
|
|
return -32768;
|
|
|
|
else
|
|
|
|
return (i - 0x43c00000);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decode ac3 frame.
|
|
|
|
*
|
|
|
|
* @param avctx Pointer to AVCodecContext
|
|
|
|
* @param data Pointer to pcm smaples
|
|
|
|
* @param data_size Set to number of pcm samples produced by decoding
|
|
|
|
* @param buf Data to be decoded
|
|
|
|
* @param buf_size Size of the buffer
|
|
|
|
*/
|
|
|
|
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
|
|
|
|
{
|
|
|
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
|
|
|
|
int16_t *out_samples = (int16_t *)data;
|
|
|
|
int i, j, k, start;
|
|
|
|
int32_t *int_ptr[6];
|
|
|
|
|
|
|
|
for (i = 0; i < 6; i++)
|
|
|
|
int_ptr[i] = (int32_t *)(&ctx->output[i]);
|
|
|
|
|
|
|
|
//Initialize the GetBitContext with the start of valid AC3 Frame.
|
|
|
|
init_get_bits(&ctx->gb, buf, buf_size * 8);
|
|
|
|
|
|
|
|
//Parse the syncinfo.
|
|
|
|
if (ac3_parse_header(ctx)) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "\n");
|
|
|
|
*data_size = 0;
|
|
|
|
return buf_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
avctx->sample_rate = ctx->sampling_rate;
|
|
|
|
avctx->bit_rate = ctx->bit_rate;
|
|
|
|
|
|
|
|
/* channel config */
|
|
|
|
if (avctx->channels == 0) {
|
|
|
|
avctx->channels = ctx->out_channels;
|
|
|
|
}
|
|
|
|
if(avctx->channels != ctx->out_channels) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "Cannot mix AC3 to %d channels.\n",
|
|
|
|
avctx->channels);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
//av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate);
|
|
|
|
|
|
|
|
//Parse the Audio Blocks.
|
|
|
|
for (i = 0; i < NB_BLOCKS; i++) {
|
|
|
|
if (ac3_parse_audio_block(ctx, i)) {
|
|
|
|
av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
|
|
|
|
*data_size = 0;
|
|
|
|
return ctx->frame_size;
|
|
|
|
}
|
|
|
|
start = (ctx->output_mode & AC3_OUTPUT_LFEON) ? 0 : 1;
|
|
|
|
for (k = 0; k < 256; k++)
|
|
|
|
for (j = start; j <= ctx->nfchans; j++)
|
|
|
|
*(out_samples++) = convert(int_ptr[j][k]);
|
|
|
|
}
|
|
|
|
*data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
|
|
|
|
return ctx->frame_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Uninitialize ac3 decoder.
|
|
|
|
*/
|
|
|
|
static int ac3_decode_end(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
|
|
|
|
ff_mdct_end(&ctx->imdct_512);
|
|
|
|
ff_mdct_end(&ctx->imdct_256);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
AVCodec ac3_decoder = {
|
|
|
|
.name = "ac3",
|
|
|
|
.type = CODEC_TYPE_AUDIO,
|
|
|
|
.id = CODEC_ID_AC3,
|
|
|
|
.priv_data_size = sizeof (AC3DecodeContext),
|
|
|
|
.init = ac3_decode_init,
|
|
|
|
.close = ac3_decode_end,
|
|
|
|
.decode = ac3_decode_frame,
|
|
|
|
};
|
|
|
|
|