|
|
|
/*
|
|
|
|
* FFT/IFFT transforms
|
|
|
|
* AltiVec-enabled
|
|
|
|
* Copyright (c) 2009 Loren Merritt
|
|
|
|
*
|
|
|
|
* This file is part of Libav.
|
|
|
|
*
|
|
|
|
* Libav is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* Libav is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with Libav; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
#include "libavcodec/fft.h"
|
|
|
|
#include "util_altivec.h"
|
|
|
|
#include "types_altivec.h"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Do a complex FFT with the parameters defined in ff_fft_init(). The
|
|
|
|
* input data must be permuted before with s->revtab table. No
|
|
|
|
* 1.0/sqrt(n) normalization is done.
|
|
|
|
* AltiVec-enabled
|
|
|
|
* This code assumes that the 'z' pointer is 16 bytes-aligned
|
|
|
|
* It also assumes all FFTComplex are 8 bytes-aligned pair of float
|
|
|
|
*/
|
|
|
|
|
|
|
|
void ff_fft_calc_altivec(FFTContext *s, FFTComplex *z);
|
|
|
|
void ff_fft_calc_interleave_altivec(FFTContext *s, FFTComplex *z);
|
|
|
|
|
|
|
|
#if HAVE_GNU_AS
|
|
|
|
static void ff_imdct_half_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
|
|
|
|
{
|
|
|
|
int j, k;
|
|
|
|
int n = 1 << s->mdct_bits;
|
|
|
|
int n4 = n >> 2;
|
|
|
|
int n8 = n >> 3;
|
|
|
|
int n32 = n >> 5;
|
|
|
|
const uint16_t *revtabj = s->revtab;
|
|
|
|
const uint16_t *revtabk = s->revtab+n4;
|
|
|
|
const vec_f *tcos = (const vec_f*)(s->tcos+n8);
|
|
|
|
const vec_f *tsin = (const vec_f*)(s->tsin+n8);
|
|
|
|
const vec_f *pin = (const vec_f*)(input+n4);
|
|
|
|
vec_f *pout = (vec_f*)(output+n4);
|
|
|
|
|
|
|
|
/* pre rotation */
|
|
|
|
k = n32-1;
|
|
|
|
do {
|
|
|
|
vec_f cos,sin,cos0,sin0,cos1,sin1,re,im,r0,i0,r1,i1,a,b,c,d;
|
|
|
|
#define CMULA(p,o0,o1,o2,o3)\
|
|
|
|
a = pin[ k*2+p]; /* { z[k].re, z[k].im, z[k+1].re, z[k+1].im } */\
|
|
|
|
b = pin[-k*2-p-1]; /* { z[-k-2].re, z[-k-2].im, z[-k-1].re, z[-k-1].im } */\
|
|
|
|
re = vec_perm(a, b, vcprm(0,2,s0,s2)); /* { z[k].re, z[k+1].re, z[-k-2].re, z[-k-1].re } */\
|
|
|
|
im = vec_perm(a, b, vcprm(s3,s1,3,1)); /* { z[-k-1].im, z[-k-2].im, z[k+1].im, z[k].im } */\
|
|
|
|
cos = vec_perm(cos0, cos1, vcprm(o0,o1,s##o2,s##o3)); /* { cos[k], cos[k+1], cos[-k-2], cos[-k-1] } */\
|
|
|
|
sin = vec_perm(sin0, sin1, vcprm(o0,o1,s##o2,s##o3));\
|
|
|
|
r##p = im*cos - re*sin;\
|
|
|
|
i##p = re*cos + im*sin;
|
|
|
|
#define STORE2(v,dst)\
|
|
|
|
j = dst;\
|
|
|
|
vec_ste(v, 0, output+j*2);\
|
|
|
|
vec_ste(v, 4, output+j*2);
|
|
|
|
#define STORE8(p)\
|
|
|
|
a = vec_perm(r##p, i##p, vcprm(0,s0,0,s0));\
|
|
|
|
b = vec_perm(r##p, i##p, vcprm(1,s1,1,s1));\
|
|
|
|
c = vec_perm(r##p, i##p, vcprm(2,s2,2,s2));\
|
|
|
|
d = vec_perm(r##p, i##p, vcprm(3,s3,3,s3));\
|
|
|
|
STORE2(a, revtabk[ p*2-4]);\
|
|
|
|
STORE2(b, revtabk[ p*2-3]);\
|
|
|
|
STORE2(c, revtabj[-p*2+2]);\
|
|
|
|
STORE2(d, revtabj[-p*2+3]);
|
|
|
|
|
|
|
|
cos0 = tcos[k];
|
|
|
|
sin0 = tsin[k];
|
|
|
|
cos1 = tcos[-k-1];
|
|
|
|
sin1 = tsin[-k-1];
|
|
|
|
CMULA(0, 0,1,2,3);
|
|
|
|
CMULA(1, 2,3,0,1);
|
|
|
|
STORE8(0);
|
|
|
|
STORE8(1);
|
|
|
|
revtabj += 4;
|
|
|
|
revtabk -= 4;
|
|
|
|
k--;
|
|
|
|
} while(k >= 0);
|
|
|
|
|
|
|
|
ff_fft_calc_altivec(s, (FFTComplex*)output);
|
|
|
|
|
|
|
|
/* post rotation + reordering */
|
|
|
|
j = -n32;
|
|
|
|
k = n32-1;
|
|
|
|
do {
|
|
|
|
vec_f cos,sin,re,im,a,b,c,d;
|
|
|
|
#define CMULB(d0,d1,o)\
|
|
|
|
re = pout[o*2];\
|
|
|
|
im = pout[o*2+1];\
|
|
|
|
cos = tcos[o];\
|
|
|
|
sin = tsin[o];\
|
|
|
|
d0 = im*sin - re*cos;\
|
|
|
|
d1 = re*sin + im*cos;
|
|
|
|
|
|
|
|
CMULB(a,b,j);
|
|
|
|
CMULB(c,d,k);
|
|
|
|
pout[2*j] = vec_perm(a, d, vcprm(0,s3,1,s2));
|
|
|
|
pout[2*j+1] = vec_perm(a, d, vcprm(2,s1,3,s0));
|
|
|
|
pout[2*k] = vec_perm(c, b, vcprm(0,s3,1,s2));
|
|
|
|
pout[2*k+1] = vec_perm(c, b, vcprm(2,s1,3,s0));
|
|
|
|
j++;
|
|
|
|
k--;
|
|
|
|
} while(k >= 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ff_imdct_calc_altivec(FFTContext *s, FFTSample *output, const FFTSample *input)
|
|
|
|
{
|
|
|
|
int k;
|
|
|
|
int n = 1 << s->mdct_bits;
|
|
|
|
int n4 = n >> 2;
|
|
|
|
int n16 = n >> 4;
|
|
|
|
vec_u32 sign = {1U<<31,1U<<31,1U<<31,1U<<31};
|
|
|
|
vec_u32 *p0 = (vec_u32*)(output+n4);
|
|
|
|
vec_u32 *p1 = (vec_u32*)(output+n4*3);
|
|
|
|
|
|
|
|
ff_imdct_half_altivec(s, output+n4, input);
|
|
|
|
|
|
|
|
for (k = 0; k < n16; k++) {
|
|
|
|
vec_u32 a = p0[k] ^ sign;
|
|
|
|
vec_u32 b = p1[-k-1];
|
|
|
|
p0[-k-1] = vec_perm(a, a, vcprm(3,2,1,0));
|
|
|
|
p1[k] = vec_perm(b, b, vcprm(3,2,1,0));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif /* HAVE_GNU_AS */
|
|
|
|
|
|
|
|
av_cold void ff_fft_init_altivec(FFTContext *s)
|
|
|
|
{
|
|
|
|
#if HAVE_GNU_AS
|
|
|
|
s->fft_calc = ff_fft_calc_interleave_altivec;
|
|
|
|
s->imdct_calc = ff_imdct_calc_altivec;
|
|
|
|
s->imdct_half = ff_imdct_half_altivec;
|
|
|
|
#endif
|
|
|
|
}
|