You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3703 lines
143 KiB

/*
* Copyright (c) Lynne
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define VK_NO_PROTOTYPES
#define VK_ENABLE_BETA_EXTENSIONS
#ifdef _WIN32
#include <windows.h> /* Included to prevent conflicts with CreateSemaphore */
#include <versionhelpers.h>
#include "compat/w32dlfcn.h"
#else
#include <dlfcn.h>
#endif
#include "thread.h"
#include <unistd.h>
#include "config.h"
#include "pixdesc.h"
#include "avstring.h"
#include "imgutils.h"
#include "hwcontext.h"
#include "avassert.h"
#include "hwcontext_internal.h"
#include "hwcontext_vulkan.h"
#include "vulkan.h"
#include "vulkan_loader.h"
#if CONFIG_VAAPI
#include "hwcontext_vaapi.h"
#endif
#if CONFIG_LIBDRM
#if CONFIG_VAAPI
#include <va/va_drmcommon.h>
#endif
#include <sys/sysmacros.h>
#include <sys/stat.h>
#include <xf86drm.h>
#include <drm_fourcc.h>
#include "hwcontext_drm.h"
#endif
#if CONFIG_CUDA
#include "hwcontext_cuda_internal.h"
#include "cuda_check.h"
#define CHECK_CU(x) FF_CUDA_CHECK_DL(cuda_cu, cu, x)
#endif
typedef struct VulkanQueueCtx {
VkFence fence;
VkQueue queue;
int was_synchronous;
int qf;
int qidx;
/* Buffer dependencies */
AVBufferRef **buf_deps;
int nb_buf_deps;
unsigned int buf_deps_alloc_size;
} VulkanQueueCtx;
typedef struct VulkanDevicePriv {
/* Vulkan library and loader functions */
void *libvulkan;
FFVulkanContext vkctx;
FFVkQueueFamilyCtx compute_qf;
FFVkQueueFamilyCtx transfer_qf;
/* Properties */
VkPhysicalDeviceProperties2 props;
VkPhysicalDeviceMemoryProperties mprops;
VkPhysicalDeviceExternalMemoryHostPropertiesEXT hprops;
/* Features */
VkPhysicalDeviceVulkan11Features device_features_1_1;
VkPhysicalDeviceVulkan12Features device_features_1_2;
VkPhysicalDeviceVulkan13Features device_features_1_3;
VkPhysicalDeviceDescriptorBufferFeaturesEXT desc_buf_features;
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT atomic_float_features;
/* Queues */
pthread_mutex_t **qf_mutex;
uint32_t nb_tot_qfs;
uint32_t img_qfs[5];
uint32_t nb_img_qfs;
/* Debug callback */
VkDebugUtilsMessengerEXT debug_ctx;
/* Settings */
int use_linear_images;
/* Option to allocate all image planes in a single allocation */
int contiguous_planes;
/* Disable multiplane images */
int disable_multiplane;
/* Nvidia */
int dev_is_nvidia;
} VulkanDevicePriv;
typedef struct VulkanFramesPriv {
/* Image conversions */
FFVkExecPool compute_exec;
/* Image transfers */
FFVkExecPool upload_exec;
FFVkExecPool download_exec;
/* Modifier info list to free at uninit */
VkImageDrmFormatModifierListCreateInfoEXT *modifier_info;
} VulkanFramesPriv;
typedef struct AVVkFrameInternal {
pthread_mutex_t update_mutex;
#if CONFIG_CUDA
/* Importing external memory into cuda is really expensive so we keep the
* memory imported all the time */
AVBufferRef *cuda_fc_ref; /* Need to keep it around for uninit */
CUexternalMemory ext_mem[AV_NUM_DATA_POINTERS];
CUmipmappedArray cu_mma[AV_NUM_DATA_POINTERS];
CUarray cu_array[AV_NUM_DATA_POINTERS];
CUexternalSemaphore cu_sem[AV_NUM_DATA_POINTERS];
#ifdef _WIN32
HANDLE ext_mem_handle[AV_NUM_DATA_POINTERS];
HANDLE ext_sem_handle[AV_NUM_DATA_POINTERS];
#endif
#endif
} AVVkFrameInternal;
#define ASPECT_2PLANE (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT)
#define ASPECT_3PLANE (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT)
static const struct FFVkFormatEntry {
VkFormat vkf;
enum AVPixelFormat pixfmt;
VkImageAspectFlags aspect;
int vk_planes;
int nb_images;
int nb_images_fallback;
const VkFormat fallback[5];
} vk_formats_list[] = {
/* Gray formats */
{ VK_FORMAT_R8_UNORM, AV_PIX_FMT_GRAY8, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8_UNORM } },
{ VK_FORMAT_R16_UNORM, AV_PIX_FMT_GRAY16, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_R32_SFLOAT, AV_PIX_FMT_GRAYF32, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R32_SFLOAT } },
/* RGB formats */
{ VK_FORMAT_R16G16B16A16_UNORM, AV_PIX_FMT_XV36, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } },
{ VK_FORMAT_B8G8R8A8_UNORM, AV_PIX_FMT_BGRA, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B8G8R8A8_UNORM } },
{ VK_FORMAT_R8G8B8A8_UNORM, AV_PIX_FMT_RGBA, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } },
{ VK_FORMAT_R8G8B8_UNORM, AV_PIX_FMT_RGB24, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8_UNORM } },
{ VK_FORMAT_B8G8R8_UNORM, AV_PIX_FMT_BGR24, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B8G8R8_UNORM } },
{ VK_FORMAT_R16G16B16_UNORM, AV_PIX_FMT_RGB48, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16_UNORM } },
{ VK_FORMAT_R16G16B16A16_UNORM, AV_PIX_FMT_RGBA64, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } },
{ VK_FORMAT_R5G6B5_UNORM_PACK16, AV_PIX_FMT_RGB565, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R5G6B5_UNORM_PACK16 } },
{ VK_FORMAT_B5G6R5_UNORM_PACK16, AV_PIX_FMT_BGR565, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B5G6R5_UNORM_PACK16 } },
{ VK_FORMAT_B8G8R8A8_UNORM, AV_PIX_FMT_BGR0, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_B8G8R8A8_UNORM } },
{ VK_FORMAT_R8G8B8A8_UNORM, AV_PIX_FMT_RGB0, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } },
{ VK_FORMAT_A2R10G10B10_UNORM_PACK32, AV_PIX_FMT_X2RGB10, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_A2R10G10B10_UNORM_PACK32 } },
/* Planar RGB */
{ VK_FORMAT_R8_UNORM, AV_PIX_FMT_GBRAP, VK_IMAGE_ASPECT_COLOR_BIT, 1, 4, 4, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ VK_FORMAT_R16_UNORM, AV_PIX_FMT_GBRAP16, VK_IMAGE_ASPECT_COLOR_BIT, 1, 4, 4, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_R32_SFLOAT, AV_PIX_FMT_GBRPF32, VK_IMAGE_ASPECT_COLOR_BIT, 1, 3, 3, { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT } },
{ VK_FORMAT_R32_SFLOAT, AV_PIX_FMT_GBRAPF32, VK_IMAGE_ASPECT_COLOR_BIT, 1, 4, 4, { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32_SFLOAT } },
/* Two-plane 420 YUV at 8, 10, 12 and 16 bits */
{ VK_FORMAT_G8_B8R8_2PLANE_420_UNORM, AV_PIX_FMT_NV12, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } },
{ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_420_UNORM_3PACK16, AV_PIX_FMT_P010, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_420_UNORM_3PACK16, AV_PIX_FMT_P012, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ VK_FORMAT_G16_B16R16_2PLANE_420_UNORM, AV_PIX_FMT_P016, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
/* Two-plane 422 YUV at 8, 10 and 16 bits */
{ VK_FORMAT_G8_B8R8_2PLANE_422_UNORM, AV_PIX_FMT_NV16, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } },
{ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_422_UNORM_3PACK16, AV_PIX_FMT_P210, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_422_UNORM_3PACK16, AV_PIX_FMT_P212, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ VK_FORMAT_G16_B16R16_2PLANE_422_UNORM, AV_PIX_FMT_P216, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
/* Two-plane 444 YUV at 8, 10 and 16 bits */
{ VK_FORMAT_G8_B8R8_2PLANE_444_UNORM, AV_PIX_FMT_NV24, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8G8_UNORM } },
{ VK_FORMAT_G10X6_B10X6R10X6_2PLANE_444_UNORM_3PACK16, AV_PIX_FMT_P410, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ VK_FORMAT_G12X4_B12X4R12X4_2PLANE_444_UNORM_3PACK16, AV_PIX_FMT_P412, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
{ VK_FORMAT_G16_B16R16_2PLANE_444_UNORM, AV_PIX_FMT_P416, ASPECT_2PLANE, 2, 1, 2, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16G16_UNORM } },
/* Three-plane 420, 422, 444 at 8, 10, 12 and 16 bits */
{ VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P10, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P12, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_420_UNORM, AV_PIX_FMT_YUV420P16, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G8_B8_R8_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P10, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P12, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_422_UNORM, AV_PIX_FMT_YUV422P16, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G8_B8_R8_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM, VK_FORMAT_R8_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P10, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P12, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
{ VK_FORMAT_G16_B16_R16_3PLANE_444_UNORM, AV_PIX_FMT_YUV444P16, ASPECT_3PLANE, 3, 1, 3, { VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM, VK_FORMAT_R16_UNORM } },
/* Single plane 422 at 8, 10 and 12 bits */
{ VK_FORMAT_G8B8G8R8_422_UNORM, AV_PIX_FMT_YUYV422, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } },
{ VK_FORMAT_B8G8R8G8_422_UNORM, AV_PIX_FMT_UYVY422, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R8G8B8A8_UNORM } },
{ VK_FORMAT_G10X6B10X6G10X6R10X6_422_UNORM_4PACK16, AV_PIX_FMT_Y210, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } },
{ VK_FORMAT_G12X4B12X4G12X4R12X4_422_UNORM_4PACK16, AV_PIX_FMT_Y212, VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 1, { VK_FORMAT_R16G16B16A16_UNORM } },
};
static const int nb_vk_formats_list = FF_ARRAY_ELEMS(vk_formats_list);
const VkFormat *av_vkfmt_from_pixfmt(enum AVPixelFormat p)
{
for (int i = 0; i < nb_vk_formats_list; i++)
if (vk_formats_list[i].pixfmt == p)
return vk_formats_list[i].fallback;
return NULL;
}
static const struct FFVkFormatEntry *vk_find_format_entry(enum AVPixelFormat p)
{
for (int i = 0; i < nb_vk_formats_list; i++)
if (vk_formats_list[i].pixfmt == p)
return &vk_formats_list[i];
return NULL;
}
/* Malitia pura, Khronos */
#define FN_MAP_TO(dst_t, dst_name, src_t, src_name) \
static av_unused dst_t map_ ##src_name## _to_ ##dst_name(src_t src) \
{ \
dst_t dst = 0x0; \
MAP_TO(VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT, \
VK_IMAGE_USAGE_SAMPLED_BIT); \
MAP_TO(VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT, \
VK_IMAGE_USAGE_TRANSFER_SRC_BIT); \
MAP_TO(VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT, \
VK_IMAGE_USAGE_TRANSFER_DST_BIT); \
MAP_TO(VK_FORMAT_FEATURE_2_STORAGE_IMAGE_BIT, \
VK_IMAGE_USAGE_STORAGE_BIT); \
MAP_TO(VK_FORMAT_FEATURE_2_COLOR_ATTACHMENT_BIT, \
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT); \
MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_DECODE_OUTPUT_BIT_KHR, \
VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR); \
MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_DECODE_DPB_BIT_KHR, \
VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR); \
MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_ENCODE_DPB_BIT_KHR, \
VK_IMAGE_USAGE_VIDEO_ENCODE_DPB_BIT_KHR); \
MAP_TO(VK_FORMAT_FEATURE_2_VIDEO_ENCODE_INPUT_BIT_KHR, \
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR); \
return dst; \
}
#define MAP_TO(flag1, flag2) if (src & flag2) dst |= flag1;
FN_MAP_TO(VkFormatFeatureFlagBits2, feats, VkImageUsageFlags, usage)
#undef MAP_TO
#define MAP_TO(flag1, flag2) if (src & flag1) dst |= flag2;
FN_MAP_TO(VkImageUsageFlags, usage, VkFormatFeatureFlagBits2, feats)
#undef MAP_TO
#undef FN_MAP_TO
static int vkfmt_from_pixfmt2(AVHWDeviceContext *dev_ctx, enum AVPixelFormat p,
VkImageTiling tiling,
VkFormat fmts[AV_NUM_DATA_POINTERS],
int *nb_images, VkImageAspectFlags *aspect,
VkImageUsageFlags *supported_usage, int disable_multiplane)
{
AVVulkanDeviceContext *hwctx = dev_ctx->hwctx;
VulkanDevicePriv *priv = dev_ctx->internal->priv;
FFVulkanFunctions *vk = &priv->vkctx.vkfn;
const VkFormatFeatureFlagBits2 basic_flags = VK_FORMAT_FEATURE_2_SAMPLED_IMAGE_BIT |
VK_FORMAT_FEATURE_2_TRANSFER_SRC_BIT |
VK_FORMAT_FEATURE_2_TRANSFER_DST_BIT;
for (int i = 0; i < nb_vk_formats_list; i++) {
if (vk_formats_list[i].pixfmt == p) {
VkFormatProperties2 prop = {
.sType = VK_STRUCTURE_TYPE_FORMAT_PROPERTIES_2,
};
VkFormatFeatureFlagBits2 feats_primary, feats_secondary;
int basics_primary = 0, basics_secondary = 0;
vk->GetPhysicalDeviceFormatProperties2(hwctx->phys_dev,
vk_formats_list[i].vkf,
&prop);
feats_primary = tiling == VK_IMAGE_TILING_LINEAR ?
prop.formatProperties.linearTilingFeatures :
prop.formatProperties.optimalTilingFeatures;
basics_primary = (feats_primary & basic_flags) == basic_flags;
if (vk_formats_list[i].vkf != vk_formats_list[i].fallback[0]) {
vk->GetPhysicalDeviceFormatProperties2(hwctx->phys_dev,
vk_formats_list[i].fallback[0],
&prop);
feats_secondary = tiling == VK_IMAGE_TILING_LINEAR ?
prop.formatProperties.linearTilingFeatures :
prop.formatProperties.optimalTilingFeatures;
basics_secondary = (feats_secondary & basic_flags) == basic_flags;
} else {
basics_secondary = basics_primary;
}
if (basics_primary && !(disable_multiplane && vk_formats_list[i].vk_planes > 1)) {
if (fmts)
fmts[0] = vk_formats_list[i].vkf;
if (nb_images)
*nb_images = 1;
if (aspect)
*aspect = vk_formats_list[i].aspect;
if (supported_usage)
*supported_usage = map_feats_to_usage(feats_primary);
return 0;
} else if (basics_secondary) {
if (fmts) {
for (int j = 0; j < vk_formats_list[i].nb_images_fallback; j++)
fmts[j] = vk_formats_list[i].fallback[j];
}
if (nb_images)
*nb_images = vk_formats_list[i].nb_images_fallback;
if (aspect)
*aspect = vk_formats_list[i].aspect;
if (supported_usage)
*supported_usage = map_feats_to_usage(feats_secondary);
return 0;
} else {
return AVERROR(ENOTSUP);
}
}
}
return AVERROR(EINVAL);
}
static int load_libvulkan(AVHWDeviceContext *ctx)
{
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
static const char *lib_names[] = {
#if defined(_WIN32)
"vulkan-1.dll",
#elif defined(__APPLE__)
"libvulkan.dylib",
"libvulkan.1.dylib",
"libMoltenVK.dylib",
#else
"libvulkan.so.1",
"libvulkan.so",
#endif
};
for (int i = 0; i < FF_ARRAY_ELEMS(lib_names); i++) {
p->libvulkan = dlopen(lib_names[i], RTLD_NOW | RTLD_LOCAL);
if (p->libvulkan)
break;
}
if (!p->libvulkan) {
av_log(ctx, AV_LOG_ERROR, "Unable to open the libvulkan library!\n");
return AVERROR_UNKNOWN;
}
hwctx->get_proc_addr = (PFN_vkGetInstanceProcAddr)dlsym(p->libvulkan, "vkGetInstanceProcAddr");
return 0;
}
typedef struct VulkanOptExtension {
const char *name;
FFVulkanExtensions flag;
} VulkanOptExtension;
static const VulkanOptExtension optional_instance_exts[] = {
/* Pointless, here avoid zero-sized structs */
{ VK_KHR_PORTABILITY_ENUMERATION_EXTENSION_NAME, FF_VK_EXT_NO_FLAG },
};
static const VulkanOptExtension optional_device_exts[] = {
/* Misc or required by other extensions */
{ VK_KHR_PORTABILITY_SUBSET_EXTENSION_NAME, FF_VK_EXT_NO_FLAG },
{ VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME, FF_VK_EXT_NO_FLAG },
{ VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, FF_VK_EXT_NO_FLAG },
{ VK_EXT_DESCRIPTOR_BUFFER_EXTENSION_NAME, FF_VK_EXT_DESCRIPTOR_BUFFER, },
{ VK_EXT_PHYSICAL_DEVICE_DRM_EXTENSION_NAME, FF_VK_EXT_DEVICE_DRM },
{ VK_EXT_SHADER_ATOMIC_FLOAT_EXTENSION_NAME, FF_VK_EXT_ATOMIC_FLOAT },
/* Imports/exports */
{ VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_FD_MEMORY },
{ VK_EXT_EXTERNAL_MEMORY_DMA_BUF_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_DMABUF_MEMORY },
{ VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME, FF_VK_EXT_DRM_MODIFIER_FLAGS },
{ VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_FD_SEM },
{ VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_HOST_MEMORY },
#ifdef _WIN32
{ VK_KHR_EXTERNAL_MEMORY_WIN32_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_WIN32_MEMORY },
{ VK_KHR_EXTERNAL_SEMAPHORE_WIN32_EXTENSION_NAME, FF_VK_EXT_EXTERNAL_WIN32_SEM },
#endif
/* Video encoding/decoding */
{ VK_KHR_VIDEO_QUEUE_EXTENSION_NAME, FF_VK_EXT_VIDEO_QUEUE },
{ VK_KHR_VIDEO_DECODE_QUEUE_EXTENSION_NAME, FF_VK_EXT_VIDEO_DECODE_QUEUE },
{ VK_KHR_VIDEO_DECODE_H264_EXTENSION_NAME, FF_VK_EXT_VIDEO_DECODE_H264 },
{ VK_KHR_VIDEO_DECODE_H265_EXTENSION_NAME, FF_VK_EXT_VIDEO_DECODE_H265 },
{ "VK_MESA_video_decode_av1", FF_VK_EXT_VIDEO_DECODE_AV1 },
};
static VkBool32 VKAPI_CALL vk_dbg_callback(VkDebugUtilsMessageSeverityFlagBitsEXT severity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *data,
void *priv)
{
int l;
AVHWDeviceContext *ctx = priv;
switch (severity) {
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT: l = AV_LOG_VERBOSE; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT: l = AV_LOG_INFO; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT: l = AV_LOG_WARNING; break;
case VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT: l = AV_LOG_ERROR; break;
default: l = AV_LOG_DEBUG; break;
}
av_log(ctx, l, "%s\n", data->pMessage);
for (int i = 0; i < data->cmdBufLabelCount; i++)
av_log(ctx, l, "\t%i: %s\n", i, data->pCmdBufLabels[i].pLabelName);
return 0;
}
#define ADD_VAL_TO_LIST(list, count, val) \
do { \
list = av_realloc_array(list, sizeof(*list), ++count); \
if (!list) { \
err = AVERROR(ENOMEM); \
goto fail; \
} \
list[count - 1] = av_strdup(val); \
if (!list[count - 1]) { \
err = AVERROR(ENOMEM); \
goto fail; \
} \
} while(0)
#define RELEASE_PROPS(props, count) \
if (props) { \
for (int i = 0; i < count; i++) \
av_free((void *)((props)[i])); \
av_free((void *)props); \
}
static int check_extensions(AVHWDeviceContext *ctx, int dev, AVDictionary *opts,
const char * const **dst, uint32_t *num, int debug)
{
const char *tstr;
const char **extension_names = NULL;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
int err = 0, found, extensions_found = 0;
const char *mod;
int optional_exts_num;
uint32_t sup_ext_count;
char *user_exts_str = NULL;
AVDictionaryEntry *user_exts;
VkExtensionProperties *sup_ext;
const VulkanOptExtension *optional_exts;
if (!dev) {
mod = "instance";
optional_exts = optional_instance_exts;
optional_exts_num = FF_ARRAY_ELEMS(optional_instance_exts);
user_exts = av_dict_get(opts, "instance_extensions", NULL, 0);
if (user_exts) {
user_exts_str = av_strdup(user_exts->value);
if (!user_exts_str) {
err = AVERROR(ENOMEM);
goto fail;
}
}
vk->EnumerateInstanceExtensionProperties(NULL, &sup_ext_count, NULL);
sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties));
if (!sup_ext)
return AVERROR(ENOMEM);
vk->EnumerateInstanceExtensionProperties(NULL, &sup_ext_count, sup_ext);
} else {
mod = "device";
optional_exts = optional_device_exts;
optional_exts_num = FF_ARRAY_ELEMS(optional_device_exts);
user_exts = av_dict_get(opts, "device_extensions", NULL, 0);
if (user_exts) {
user_exts_str = av_strdup(user_exts->value);
if (!user_exts_str) {
err = AVERROR(ENOMEM);
goto fail;
}
}
vk->EnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL,
&sup_ext_count, NULL);
sup_ext = av_malloc_array(sup_ext_count, sizeof(VkExtensionProperties));
if (!sup_ext)
return AVERROR(ENOMEM);
vk->EnumerateDeviceExtensionProperties(hwctx->phys_dev, NULL,
&sup_ext_count, sup_ext);
}
for (int i = 0; i < optional_exts_num; i++) {
tstr = optional_exts[i].name;
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(tstr, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (!found)
continue;
av_log(ctx, AV_LOG_VERBOSE, "Using %s extension %s\n", mod, tstr);
p->vkctx.extensions |= optional_exts[i].flag;
ADD_VAL_TO_LIST(extension_names, extensions_found, tstr);
}
if (debug && !dev) {
tstr = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(tstr, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (found) {
av_log(ctx, AV_LOG_VERBOSE, "Using %s extension %s\n", mod, tstr);
ADD_VAL_TO_LIST(extension_names, extensions_found, tstr);
p->vkctx.extensions |= FF_VK_EXT_DEBUG_UTILS;
} else {
av_log(ctx, AV_LOG_ERROR, "Debug extension \"%s\" not found!\n",
tstr);
err = AVERROR(EINVAL);
goto fail;
}
}
if (user_exts_str) {
char *save, *token = av_strtok(user_exts_str, "+", &save);
while (token) {
found = 0;
for (int j = 0; j < sup_ext_count; j++) {
if (!strcmp(token, sup_ext[j].extensionName)) {
found = 1;
break;
}
}
if (found) {
av_log(ctx, AV_LOG_VERBOSE, "Using %s extension \"%s\"\n", mod, token);
ADD_VAL_TO_LIST(extension_names, extensions_found, token);
} else {
av_log(ctx, AV_LOG_WARNING, "%s extension \"%s\" not found, excluding.\n",
mod, token);
}
token = av_strtok(NULL, "+", &save);
}
}
*dst = extension_names;
*num = extensions_found;
av_free(user_exts_str);
av_free(sup_ext);
return 0;
fail:
RELEASE_PROPS(extension_names, extensions_found);
av_free(user_exts_str);
av_free(sup_ext);
return err;
}
static int check_validation_layers(AVHWDeviceContext *ctx, AVDictionary *opts,
const char * const **dst, uint32_t *num,
int *debug_mode)
{
static const char default_layer[] = { "VK_LAYER_KHRONOS_validation" };
int found = 0, err = 0;
VulkanDevicePriv *priv = ctx->internal->priv;
FFVulkanFunctions *vk = &priv->vkctx.vkfn;
uint32_t sup_layer_count;
VkLayerProperties *sup_layers;
AVDictionaryEntry *user_layers;
char *user_layers_str = NULL;
char *save, *token;
const char **enabled_layers = NULL;
uint32_t enabled_layers_count = 0;
AVDictionaryEntry *debug_opt = av_dict_get(opts, "debug", NULL, 0);
int debug = debug_opt && strtol(debug_opt->value, NULL, 10);
/* If `debug=0`, enable no layers at all. */
if (debug_opt && !debug)
return 0;
vk->EnumerateInstanceLayerProperties(&sup_layer_count, NULL);
sup_layers = av_malloc_array(sup_layer_count, sizeof(VkLayerProperties));
if (!sup_layers)
return AVERROR(ENOMEM);
vk->EnumerateInstanceLayerProperties(&sup_layer_count, sup_layers);
av_log(ctx, AV_LOG_VERBOSE, "Supported validation layers:\n");
for (int i = 0; i < sup_layer_count; i++)
av_log(ctx, AV_LOG_VERBOSE, "\t%s\n", sup_layers[i].layerName);
/* If `debug=1` is specified, enable the standard validation layer extension */
if (debug) {
*debug_mode = debug;
for (int i = 0; i < sup_layer_count; i++) {
if (!strcmp(default_layer, sup_layers[i].layerName)) {
found = 1;
av_log(ctx, AV_LOG_VERBOSE, "Default validation layer %s is enabled\n",
default_layer);
ADD_VAL_TO_LIST(enabled_layers, enabled_layers_count, default_layer);
break;
}
}
}
user_layers = av_dict_get(opts, "validation_layers", NULL, 0);
if (!user_layers)
goto end;
user_layers_str = av_strdup(user_layers->value);
if (!user_layers_str) {
err = AVERROR(ENOMEM);
goto fail;
}
token = av_strtok(user_layers_str, "+", &save);
while (token) {
found = 0;
if (!strcmp(default_layer, token)) {
if (debug) {
/* if the `debug=1`, default_layer is enabled, skip here */
token = av_strtok(NULL, "+", &save);
continue;
} else {
/* if the `debug=0`, enable debug mode to load its callback properly */
*debug_mode = debug;
}
}
for (int j = 0; j < sup_layer_count; j++) {
if (!strcmp(token, sup_layers[j].layerName)) {
found = 1;
break;
}
}
if (found) {
av_log(ctx, AV_LOG_VERBOSE, "Requested Validation Layer: %s\n", token);
ADD_VAL_TO_LIST(enabled_layers, enabled_layers_count, token);
} else {
av_log(ctx, AV_LOG_ERROR,
"Validation Layer \"%s\" not support.\n", token);
err = AVERROR(EINVAL);
goto fail;
}
token = av_strtok(NULL, "+", &save);
}
av_free(user_layers_str);
end:
av_free(sup_layers);
*dst = enabled_layers;
*num = enabled_layers_count;
return 0;
fail:
RELEASE_PROPS(enabled_layers, enabled_layers_count);
av_free(sup_layers);
av_free(user_layers_str);
return err;
}
/* Creates a VkInstance */
static int create_instance(AVHWDeviceContext *ctx, AVDictionary *opts)
{
int err = 0, debug_mode = 0;
VkResult ret;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkApplicationInfo application_info = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pApplicationName = "ffmpeg",
.applicationVersion = VK_MAKE_VERSION(LIBAVUTIL_VERSION_MAJOR,
LIBAVUTIL_VERSION_MINOR,
LIBAVUTIL_VERSION_MICRO),
.pEngineName = "libavutil",
.apiVersion = VK_API_VERSION_1_3,
.engineVersion = VK_MAKE_VERSION(LIBAVUTIL_VERSION_MAJOR,
LIBAVUTIL_VERSION_MINOR,
LIBAVUTIL_VERSION_MICRO),
};
VkValidationFeaturesEXT validation_features = {
.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT,
};
VkInstanceCreateInfo inst_props = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pApplicationInfo = &application_info,
};
if (!hwctx->get_proc_addr) {
err = load_libvulkan(ctx);
if (err < 0)
return err;
}
err = ff_vk_load_functions(ctx, vk, p->vkctx.extensions, 0, 0);
if (err < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to load instance enumeration functions!\n");
return err;
}
err = check_validation_layers(ctx, opts, &inst_props.ppEnabledLayerNames,
&inst_props.enabledLayerCount, &debug_mode);
if (err)
goto fail;
/* Check for present/missing extensions */
err = check_extensions(ctx, 0, opts, &inst_props.ppEnabledExtensionNames,
&inst_props.enabledExtensionCount, debug_mode);
hwctx->enabled_inst_extensions = inst_props.ppEnabledExtensionNames;
hwctx->nb_enabled_inst_extensions = inst_props.enabledExtensionCount;
if (err < 0)
goto fail;
if (debug_mode) {
VkValidationFeatureEnableEXT feat_list[] = {
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT,
VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_RESERVE_BINDING_SLOT_EXT,
VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT,
};
validation_features.pEnabledValidationFeatures = feat_list;
validation_features.enabledValidationFeatureCount = FF_ARRAY_ELEMS(feat_list);
inst_props.pNext = &validation_features;
}
/* Try to create the instance */
ret = vk->CreateInstance(&inst_props, hwctx->alloc, &hwctx->inst);
/* Check for errors */
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Instance creation failure: %s\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
err = ff_vk_load_functions(ctx, vk, p->vkctx.extensions, 1, 0);
if (err < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to load instance functions!\n");
goto fail;
}
if (debug_mode) {
VkDebugUtilsMessengerCreateInfoEXT dbg = {
.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT,
.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT,
.pfnUserCallback = vk_dbg_callback,
.pUserData = ctx,
};
vk->CreateDebugUtilsMessengerEXT(hwctx->inst, &dbg,
hwctx->alloc, &p->debug_ctx);
}
err = 0;
fail:
RELEASE_PROPS(inst_props.ppEnabledLayerNames, inst_props.enabledLayerCount);
return err;
}
typedef struct VulkanDeviceSelection {
uint8_t uuid[VK_UUID_SIZE]; /* Will use this first unless !has_uuid */
int has_uuid;
uint32_t drm_major; /* Will use this second unless !has_drm */
uint32_t drm_minor; /* Will use this second unless !has_drm */
uint32_t has_drm; /* has drm node info */
const char *name; /* Will use this third unless NULL */
uint32_t pci_device; /* Will use this fourth unless 0x0 */
uint32_t vendor_id; /* Last resort to find something deterministic */
int index; /* Finally fall back to index */
} VulkanDeviceSelection;
static const char *vk_dev_type(enum VkPhysicalDeviceType type)
{
switch (type) {
case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU: return "integrated";
case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU: return "discrete";
case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU: return "virtual";
case VK_PHYSICAL_DEVICE_TYPE_CPU: return "software";
default: return "unknown";
}
}
/* Finds a device */
static int find_device(AVHWDeviceContext *ctx, VulkanDeviceSelection *select)
{
int err = 0, choice = -1;
uint32_t num;
VkResult ret;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
VkPhysicalDevice *devices = NULL;
VkPhysicalDeviceIDProperties *idp = NULL;
VkPhysicalDeviceProperties2 *prop = NULL;
VkPhysicalDeviceDrmPropertiesEXT *drm_prop = NULL;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
ret = vk->EnumeratePhysicalDevices(hwctx->inst, &num, NULL);
if (ret != VK_SUCCESS || !num) {
av_log(ctx, AV_LOG_ERROR, "No devices found: %s!\n", ff_vk_ret2str(ret));
return AVERROR(ENODEV);
}
devices = av_malloc_array(num, sizeof(VkPhysicalDevice));
if (!devices)
return AVERROR(ENOMEM);
ret = vk->EnumeratePhysicalDevices(hwctx->inst, &num, devices);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed enumerating devices: %s\n",
ff_vk_ret2str(ret));
err = AVERROR(ENODEV);
goto end;
}
prop = av_calloc(num, sizeof(*prop));
if (!prop) {
err = AVERROR(ENOMEM);
goto end;
}
idp = av_calloc(num, sizeof(*idp));
if (!idp) {
err = AVERROR(ENOMEM);
goto end;
}
if (p->vkctx.extensions & FF_VK_EXT_DEVICE_DRM) {
drm_prop = av_calloc(num, sizeof(*drm_prop));
if (!drm_prop) {
err = AVERROR(ENOMEM);
goto end;
}
}
av_log(ctx, AV_LOG_VERBOSE, "GPU listing:\n");
for (int i = 0; i < num; i++) {
if (p->vkctx.extensions & FF_VK_EXT_DEVICE_DRM) {
drm_prop[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRM_PROPERTIES_EXT;
idp[i].pNext = &drm_prop[i];
}
idp[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
prop[i].sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
prop[i].pNext = &idp[i];
vk->GetPhysicalDeviceProperties2(devices[i], &prop[i]);
av_log(ctx, AV_LOG_VERBOSE, " %d: %s (%s) (0x%x)\n", i,
prop[i].properties.deviceName,
vk_dev_type(prop[i].properties.deviceType),
prop[i].properties.deviceID);
}
if (select->has_uuid) {
for (int i = 0; i < num; i++) {
if (!strncmp(idp[i].deviceUUID, select->uuid, VK_UUID_SIZE)) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device by given UUID!\n");
err = AVERROR(ENODEV);
goto end;
} else if ((p->vkctx.extensions & FF_VK_EXT_DEVICE_DRM) && select->has_drm) {
for (int i = 0; i < num; i++) {
if ((select->drm_major == drm_prop[i].primaryMajor &&
select->drm_minor == drm_prop[i].primaryMinor) ||
(select->drm_major == drm_prop[i].renderMajor &&
select->drm_minor == drm_prop[i].renderMinor)) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device by given DRM node numbers %i:%i!\n",
select->drm_major, select->drm_minor);
err = AVERROR(ENODEV);
goto end;
} else if (select->name) {
av_log(ctx, AV_LOG_VERBOSE, "Requested device: %s\n", select->name);
for (int i = 0; i < num; i++) {
if (strstr(prop[i].properties.deviceName, select->name)) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device \"%s\"!\n",
select->name);
err = AVERROR(ENODEV);
goto end;
} else if (select->pci_device) {
av_log(ctx, AV_LOG_VERBOSE, "Requested device: 0x%x\n", select->pci_device);
for (int i = 0; i < num; i++) {
if (select->pci_device == prop[i].properties.deviceID) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with PCI ID 0x%x!\n",
select->pci_device);
err = AVERROR(EINVAL);
goto end;
} else if (select->vendor_id) {
av_log(ctx, AV_LOG_VERBOSE, "Requested vendor: 0x%x\n", select->vendor_id);
for (int i = 0; i < num; i++) {
if (select->vendor_id == prop[i].properties.vendorID) {
choice = i;
goto end;
}
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with Vendor ID 0x%x!\n",
select->vendor_id);
err = AVERROR(ENODEV);
goto end;
} else {
if (select->index < num) {
choice = select->index;
goto end;
}
av_log(ctx, AV_LOG_ERROR, "Unable to find device with index %i!\n",
select->index);
err = AVERROR(ENODEV);
goto end;
}
end:
if (choice > -1) {
av_log(ctx, AV_LOG_VERBOSE, "Device %d selected: %s (%s) (0x%x)\n",
choice, prop[choice].properties.deviceName,
vk_dev_type(prop[choice].properties.deviceType),
prop[choice].properties.deviceID);
hwctx->phys_dev = devices[choice];
}
av_free(devices);
av_free(prop);
av_free(idp);
av_free(drm_prop);
return err;
}
/* Picks the least used qf with the fewest unneeded flags, or -1 if none found */
static inline int pick_queue_family(VkQueueFamilyProperties *qf, uint32_t num_qf,
VkQueueFlagBits flags)
{
int index = -1;
uint32_t min_score = UINT32_MAX;
for (int i = 0; i < num_qf; i++) {
const VkQueueFlagBits qflags = qf[i].queueFlags;
if (qflags & flags) {
uint32_t score = av_popcount(qflags) + qf[i].timestampValidBits;
if (score < min_score) {
index = i;
min_score = score;
}
}
}
if (index > -1)
qf[index].timestampValidBits++;
return index;
}
static int setup_queue_families(AVHWDeviceContext *ctx, VkDeviceCreateInfo *cd)
{
uint32_t num;
float *weights;
VkQueueFamilyProperties *qf = NULL;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
int graph_index, comp_index, tx_index, enc_index, dec_index;
/* First get the number of queue families */
vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, NULL);
if (!num) {
av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n");
return AVERROR_EXTERNAL;
}
/* Then allocate memory */
qf = av_malloc_array(num, sizeof(VkQueueFamilyProperties));
if (!qf)
return AVERROR(ENOMEM);
/* Finally retrieve the queue families */
vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &num, qf);
av_log(ctx, AV_LOG_VERBOSE, "Queue families:\n");
for (int i = 0; i < num; i++) {
av_log(ctx, AV_LOG_VERBOSE, " %i:%s%s%s%s%s%s%s (queues: %i)\n", i,
((qf[i].queueFlags) & VK_QUEUE_GRAPHICS_BIT) ? " graphics" : "",
((qf[i].queueFlags) & VK_QUEUE_COMPUTE_BIT) ? " compute" : "",
((qf[i].queueFlags) & VK_QUEUE_TRANSFER_BIT) ? " transfer" : "",
((qf[i].queueFlags) & VK_QUEUE_VIDEO_ENCODE_BIT_KHR) ? " encode" : "",
((qf[i].queueFlags) & VK_QUEUE_VIDEO_DECODE_BIT_KHR) ? " decode" : "",
((qf[i].queueFlags) & VK_QUEUE_SPARSE_BINDING_BIT) ? " sparse" : "",
((qf[i].queueFlags) & VK_QUEUE_PROTECTED_BIT) ? " protected" : "",
qf[i].queueCount);
/* We use this field to keep a score of how many times we've used that
* queue family in order to make better choices. */
qf[i].timestampValidBits = 0;
}
/* Pick each queue family to use */
graph_index = pick_queue_family(qf, num, VK_QUEUE_GRAPHICS_BIT);
comp_index = pick_queue_family(qf, num, VK_QUEUE_COMPUTE_BIT);
tx_index = pick_queue_family(qf, num, VK_QUEUE_TRANSFER_BIT);
enc_index = pick_queue_family(qf, num, VK_QUEUE_VIDEO_ENCODE_BIT_KHR);
dec_index = pick_queue_family(qf, num, VK_QUEUE_VIDEO_DECODE_BIT_KHR);
/* Signalling the transfer capabilities on a queue family is optional */
if (tx_index < 0) {
tx_index = pick_queue_family(qf, num, VK_QUEUE_COMPUTE_BIT);
if (tx_index < 0)
tx_index = pick_queue_family(qf, num, VK_QUEUE_GRAPHICS_BIT);
}
hwctx->queue_family_index = -1;
hwctx->queue_family_comp_index = -1;
hwctx->queue_family_tx_index = -1;
hwctx->queue_family_encode_index = -1;
hwctx->queue_family_decode_index = -1;
#define SETUP_QUEUE(qf_idx) \
if (qf_idx > -1) { \
int fidx = qf_idx; \
int qc = qf[fidx].queueCount; \
VkDeviceQueueCreateInfo *pc; \
\
if (fidx == graph_index) { \
hwctx->queue_family_index = fidx; \
hwctx->nb_graphics_queues = qc; \
graph_index = -1; \
} \
if (fidx == comp_index) { \
hwctx->queue_family_comp_index = fidx; \
hwctx->nb_comp_queues = qc; \
comp_index = -1; \
} \
if (fidx == tx_index) { \
hwctx->queue_family_tx_index = fidx; \
hwctx->nb_tx_queues = qc; \
tx_index = -1; \
} \
if (fidx == enc_index) { \
hwctx->queue_family_encode_index = fidx; \
hwctx->nb_encode_queues = qc; \
enc_index = -1; \
} \
if (fidx == dec_index) { \
hwctx->queue_family_decode_index = fidx; \
hwctx->nb_decode_queues = qc; \
dec_index = -1; \
} \
\
pc = av_realloc((void *)cd->pQueueCreateInfos, \
sizeof(*pc) * (cd->queueCreateInfoCount + 1)); \
if (!pc) { \
av_free(qf); \
return AVERROR(ENOMEM); \
} \
cd->pQueueCreateInfos = pc; \
pc = &pc[cd->queueCreateInfoCount]; \
\
weights = av_malloc(qc * sizeof(float)); \
if (!weights) { \
av_free(qf); \
return AVERROR(ENOMEM); \
} \
\
memset(pc, 0, sizeof(*pc)); \
pc->sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; \
pc->queueFamilyIndex = fidx; \
pc->queueCount = qc; \
pc->pQueuePriorities = weights; \
\
for (int i = 0; i < qc; i++) \
weights[i] = 1.0f / qc; \
\
cd->queueCreateInfoCount++; \
}
SETUP_QUEUE(graph_index)
SETUP_QUEUE(comp_index)
SETUP_QUEUE(tx_index)
SETUP_QUEUE(enc_index)
SETUP_QUEUE(dec_index)
#undef SETUP_QUEUE
av_free(qf);
return 0;
}
static void vulkan_device_free(AVHWDeviceContext *ctx)
{
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
if (hwctx->act_dev)
vk->DestroyDevice(hwctx->act_dev, hwctx->alloc);
if (p->debug_ctx)
vk->DestroyDebugUtilsMessengerEXT(hwctx->inst, p->debug_ctx,
hwctx->alloc);
if (hwctx->inst)
vk->DestroyInstance(hwctx->inst, hwctx->alloc);
if (p->libvulkan)
dlclose(p->libvulkan);
for (uint32_t i = 0; i < p->nb_tot_qfs; i++) {
pthread_mutex_destroy(p->qf_mutex[i]);
av_freep(&p->qf_mutex[i]);
}
av_freep(&p->qf_mutex);
RELEASE_PROPS(hwctx->enabled_inst_extensions, hwctx->nb_enabled_inst_extensions);
RELEASE_PROPS(hwctx->enabled_dev_extensions, hwctx->nb_enabled_dev_extensions);
}
static int vulkan_device_create_internal(AVHWDeviceContext *ctx,
VulkanDeviceSelection *dev_select,
AVDictionary *opts, int flags)
{
int err = 0;
VkResult ret;
AVDictionaryEntry *opt_d;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
/*
* VkPhysicalDeviceVulkan12Features has a timelineSemaphore field, but
* MoltenVK doesn't implement VkPhysicalDeviceVulkan12Features yet, so we
* use VkPhysicalDeviceTimelineSemaphoreFeatures directly.
*/
VkPhysicalDeviceTimelineSemaphoreFeatures timeline_features = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TIMELINE_SEMAPHORE_FEATURES,
};
VkPhysicalDeviceShaderAtomicFloatFeaturesEXT atomic_float_features = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT,
.pNext = &timeline_features,
};
VkPhysicalDeviceDescriptorBufferFeaturesEXT desc_buf_features = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_FEATURES_EXT,
.pNext = &atomic_float_features,
};
VkPhysicalDeviceVulkan13Features dev_features_1_3 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES,
.pNext = &desc_buf_features,
};
VkPhysicalDeviceVulkan12Features dev_features_1_2 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
.pNext = &dev_features_1_3,
};
VkPhysicalDeviceVulkan11Features dev_features_1_1 = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES,
.pNext = &dev_features_1_2,
};
VkPhysicalDeviceFeatures2 dev_features = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
.pNext = &dev_features_1_1,
};
VkDeviceCreateInfo dev_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
};
hwctx->device_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
hwctx->device_features.pNext = &p->device_features_1_1;
p->device_features_1_1.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
p->device_features_1_1.pNext = &p->device_features_1_2;
p->device_features_1_2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
p->device_features_1_2.pNext = &p->device_features_1_3;
p->device_features_1_3.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_3_FEATURES;
p->device_features_1_3.pNext = &p->desc_buf_features;
p->desc_buf_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DESCRIPTOR_BUFFER_FEATURES_EXT;
p->desc_buf_features.pNext = &p->atomic_float_features;
p->atomic_float_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT;
p->atomic_float_features.pNext = NULL;
ctx->free = vulkan_device_free;
/* Create an instance if not given one */
if ((err = create_instance(ctx, opts)))
goto end;
/* Find a device (if not given one) */
if ((err = find_device(ctx, dev_select)))
goto end;
vk->GetPhysicalDeviceFeatures2(hwctx->phys_dev, &dev_features);
/* Try to keep in sync with libplacebo */
#define COPY_FEATURE(DST, NAME) (DST).features.NAME = dev_features.features.NAME;
COPY_FEATURE(hwctx->device_features, shaderImageGatherExtended)
COPY_FEATURE(hwctx->device_features, shaderStorageImageReadWithoutFormat)
COPY_FEATURE(hwctx->device_features, shaderStorageImageWriteWithoutFormat)
COPY_FEATURE(hwctx->device_features, fragmentStoresAndAtomics)
COPY_FEATURE(hwctx->device_features, vertexPipelineStoresAndAtomics)
COPY_FEATURE(hwctx->device_features, shaderInt64)
COPY_FEATURE(hwctx->device_features, shaderInt16)
COPY_FEATURE(hwctx->device_features, shaderFloat64)
#undef COPY_FEATURE
/* We require timeline semaphores */
if (!timeline_features.timelineSemaphore) {
av_log(ctx, AV_LOG_ERROR, "Device does not support timeline semaphores!\n");
err = AVERROR(ENOSYS);
goto end;
}
p->device_features_1_1.samplerYcbcrConversion = dev_features_1_1.samplerYcbcrConversion;
p->device_features_1_1.storagePushConstant16 = dev_features_1_1.storagePushConstant16;
p->device_features_1_2.timelineSemaphore = 1;
p->device_features_1_2.bufferDeviceAddress = dev_features_1_2.bufferDeviceAddress;
p->device_features_1_2.hostQueryReset = dev_features_1_2.hostQueryReset;
p->device_features_1_2.storagePushConstant8 = dev_features_1_2.storagePushConstant8;
p->device_features_1_2.shaderInt8 = dev_features_1_2.shaderInt8;
p->device_features_1_2.storageBuffer8BitAccess = dev_features_1_2.storageBuffer8BitAccess;
p->device_features_1_2.uniformAndStorageBuffer8BitAccess = dev_features_1_2.uniformAndStorageBuffer8BitAccess;
p->device_features_1_2.shaderFloat16 = dev_features_1_2.shaderFloat16;
p->device_features_1_2.shaderSharedInt64Atomics = dev_features_1_2.shaderSharedInt64Atomics;
p->device_features_1_2.vulkanMemoryModel = dev_features_1_2.vulkanMemoryModel;
p->device_features_1_2.vulkanMemoryModelDeviceScope = dev_features_1_2.vulkanMemoryModelDeviceScope;
p->device_features_1_2.hostQueryReset = dev_features_1_2.hostQueryReset;
p->device_features_1_3.dynamicRendering = dev_features_1_3.dynamicRendering;
p->device_features_1_3.maintenance4 = dev_features_1_3.maintenance4;
p->device_features_1_3.synchronization2 = dev_features_1_3.synchronization2;
p->device_features_1_3.computeFullSubgroups = dev_features_1_3.computeFullSubgroups;
p->device_features_1_3.shaderZeroInitializeWorkgroupMemory = dev_features_1_3.shaderZeroInitializeWorkgroupMemory;
p->device_features_1_3.dynamicRendering = dev_features_1_3.dynamicRendering;
p->desc_buf_features.descriptorBuffer = desc_buf_features.descriptorBuffer;
p->desc_buf_features.descriptorBufferPushDescriptors = desc_buf_features.descriptorBufferPushDescriptors;
p->atomic_float_features.shaderBufferFloat32Atomics = atomic_float_features.shaderBufferFloat32Atomics;
p->atomic_float_features.shaderBufferFloat32AtomicAdd = atomic_float_features.shaderBufferFloat32AtomicAdd;
dev_info.pNext = &hwctx->device_features;
/* Setup queue family */
if ((err = setup_queue_families(ctx, &dev_info)))
goto end;
if ((err = check_extensions(ctx, 1, opts, &dev_info.ppEnabledExtensionNames,
&dev_info.enabledExtensionCount, 0))) {
for (int i = 0; i < dev_info.queueCreateInfoCount; i++)
av_free((void *)dev_info.pQueueCreateInfos[i].pQueuePriorities);
av_free((void *)dev_info.pQueueCreateInfos);
goto end;
}
ret = vk->CreateDevice(hwctx->phys_dev, &dev_info, hwctx->alloc,
&hwctx->act_dev);
for (int i = 0; i < dev_info.queueCreateInfoCount; i++)
av_free((void *)dev_info.pQueueCreateInfos[i].pQueuePriorities);
av_free((void *)dev_info.pQueueCreateInfos);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Device creation failure: %s\n",
ff_vk_ret2str(ret));
for (int i = 0; i < dev_info.enabledExtensionCount; i++)
av_free((void *)dev_info.ppEnabledExtensionNames[i]);
av_free((void *)dev_info.ppEnabledExtensionNames);
err = AVERROR_EXTERNAL;
goto end;
}
/* Tiled images setting, use them by default */
opt_d = av_dict_get(opts, "linear_images", NULL, 0);
if (opt_d)
p->use_linear_images = strtol(opt_d->value, NULL, 10);
opt_d = av_dict_get(opts, "disable_multiplane", NULL, 0);
if (opt_d)
p->disable_multiplane = strtol(opt_d->value, NULL, 10);
hwctx->enabled_dev_extensions = dev_info.ppEnabledExtensionNames;
hwctx->nb_enabled_dev_extensions = dev_info.enabledExtensionCount;
end:
return err;
}
static void lock_queue(AVHWDeviceContext *ctx, uint32_t queue_family, uint32_t index)
{
VulkanDevicePriv *p = ctx->internal->priv;
pthread_mutex_lock(&p->qf_mutex[queue_family][index]);
}
static void unlock_queue(AVHWDeviceContext *ctx, uint32_t queue_family, uint32_t index)
{
VulkanDevicePriv *p = ctx->internal->priv;
pthread_mutex_unlock(&p->qf_mutex[queue_family][index]);
}
static int vulkan_device_init(AVHWDeviceContext *ctx)
{
int err;
uint32_t qf_num;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
VkQueueFamilyProperties *qf;
int graph_index, comp_index, tx_index, enc_index, dec_index;
/* Set device extension flags */
for (int i = 0; i < hwctx->nb_enabled_dev_extensions; i++) {
for (int j = 0; j < FF_ARRAY_ELEMS(optional_device_exts); j++) {
if (!strcmp(hwctx->enabled_dev_extensions[i],
optional_device_exts[j].name)) {
p->vkctx.extensions |= optional_device_exts[j].flag;
break;
}
}
}
err = ff_vk_load_functions(ctx, vk, p->vkctx.extensions, 1, 1);
if (err < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to load functions!\n");
return err;
}
p->props.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
p->props.pNext = &p->hprops;
p->hprops.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT;
vk->GetPhysicalDeviceProperties2(hwctx->phys_dev, &p->props);
av_log(ctx, AV_LOG_VERBOSE, "Using device: %s\n",
p->props.properties.deviceName);
av_log(ctx, AV_LOG_VERBOSE, "Alignments:\n");
av_log(ctx, AV_LOG_VERBOSE, " optimalBufferCopyRowPitchAlignment: %"PRIu64"\n",
p->props.properties.limits.optimalBufferCopyRowPitchAlignment);
av_log(ctx, AV_LOG_VERBOSE, " minMemoryMapAlignment: %"SIZE_SPECIFIER"\n",
p->props.properties.limits.minMemoryMapAlignment);
av_log(ctx, AV_LOG_VERBOSE, " nonCoherentAtomSize: %"PRIu64"\n",
p->props.properties.limits.nonCoherentAtomSize);
if (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_HOST_MEMORY)
av_log(ctx, AV_LOG_VERBOSE, " minImportedHostPointerAlignment: %"PRIu64"\n",
p->hprops.minImportedHostPointerAlignment);
p->dev_is_nvidia = (p->props.properties.vendorID == 0x10de);
vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &qf_num, NULL);
if (!qf_num) {
av_log(ctx, AV_LOG_ERROR, "Failed to get queues!\n");
return AVERROR_EXTERNAL;
}
qf = av_malloc_array(qf_num, sizeof(VkQueueFamilyProperties));
if (!qf)
return AVERROR(ENOMEM);
vk->GetPhysicalDeviceQueueFamilyProperties(hwctx->phys_dev, &qf_num, qf);
p->qf_mutex = av_calloc(qf_num, sizeof(*p->qf_mutex));
if (!p->qf_mutex)
return AVERROR(ENOMEM);
p->nb_tot_qfs = qf_num;
for (uint32_t i = 0; i < qf_num; i++) {
p->qf_mutex[i] = av_calloc(qf[i].queueCount, sizeof(**p->qf_mutex));
if (!p->qf_mutex[i])
return AVERROR(ENOMEM);
for (uint32_t j = 0; j < qf[i].queueCount; j++) {
err = pthread_mutex_init(&p->qf_mutex[i][j], NULL);
if (err != 0) {
av_log(ctx, AV_LOG_ERROR, "pthread_mutex_init failed : %s\n",
av_err2str(err));
return AVERROR(err);
}
}
}
graph_index = hwctx->queue_family_index;
comp_index = hwctx->queue_family_comp_index;
tx_index = hwctx->queue_family_tx_index;
enc_index = hwctx->queue_family_encode_index;
dec_index = hwctx->queue_family_decode_index;
#define CHECK_QUEUE(type, required, fidx, ctx_qf, qc) \
do { \
if (ctx_qf < 0 && required) { \
av_log(ctx, AV_LOG_ERROR, "%s queue family is required, but marked as missing" \
" in the context!\n", type); \
return AVERROR(EINVAL); \
} else if (fidx < 0 || ctx_qf < 0) { \
break; \
} else if (ctx_qf >= qf_num) { \
av_log(ctx, AV_LOG_ERROR, "Invalid %s family index %i (device has %i families)!\n", \
type, ctx_qf, qf_num); \
return AVERROR(EINVAL); \
} \
\
av_log(ctx, AV_LOG_VERBOSE, "Using queue family %i (queues: %i)" \
" for%s%s%s%s%s\n", \
ctx_qf, qc, \
ctx_qf == graph_index ? " graphics" : "", \
ctx_qf == comp_index ? " compute" : "", \
ctx_qf == tx_index ? " transfers" : "", \
ctx_qf == enc_index ? " encode" : "", \
ctx_qf == dec_index ? " decode" : ""); \
graph_index = (ctx_qf == graph_index) ? -1 : graph_index; \
comp_index = (ctx_qf == comp_index) ? -1 : comp_index; \
tx_index = (ctx_qf == tx_index) ? -1 : tx_index; \
enc_index = (ctx_qf == enc_index) ? -1 : enc_index; \
dec_index = (ctx_qf == dec_index) ? -1 : dec_index; \
p->img_qfs[p->nb_img_qfs++] = ctx_qf; \
} while (0)
CHECK_QUEUE("graphics", 0, graph_index, hwctx->queue_family_index, hwctx->nb_graphics_queues);
CHECK_QUEUE("upload", 1, tx_index, hwctx->queue_family_tx_index, hwctx->nb_tx_queues);
CHECK_QUEUE("compute", 1, comp_index, hwctx->queue_family_comp_index, hwctx->nb_comp_queues);
CHECK_QUEUE("encode", 0, enc_index, hwctx->queue_family_encode_index, hwctx->nb_encode_queues);
CHECK_QUEUE("decode", 0, dec_index, hwctx->queue_family_decode_index, hwctx->nb_decode_queues);
#undef CHECK_QUEUE
if (!hwctx->lock_queue)
hwctx->lock_queue = lock_queue;
if (!hwctx->unlock_queue)
hwctx->unlock_queue = unlock_queue;
/* Get device capabilities */
vk->GetPhysicalDeviceMemoryProperties(hwctx->phys_dev, &p->mprops);
p->vkctx.device = ctx;
p->vkctx.hwctx = hwctx;
ff_vk_load_props(&p->vkctx);
ff_vk_qf_init(&p->vkctx, &p->compute_qf, VK_QUEUE_COMPUTE_BIT);
ff_vk_qf_init(&p->vkctx, &p->transfer_qf, VK_QUEUE_TRANSFER_BIT);
return 0;
}
static int vulkan_device_create(AVHWDeviceContext *ctx, const char *device,
AVDictionary *opts, int flags)
{
VulkanDeviceSelection dev_select = { 0 };
if (device && device[0]) {
char *end = NULL;
dev_select.index = strtol(device, &end, 10);
if (end == device) {
dev_select.index = 0;
dev_select.name = device;
}
}
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
static int vulkan_device_derive(AVHWDeviceContext *ctx,
AVHWDeviceContext *src_ctx,
AVDictionary *opts, int flags)
{
av_unused VulkanDeviceSelection dev_select = { 0 };
/* If there's only one device on the system, then even if its not covered
* by the following checks (e.g. non-PCIe ARM GPU), having an empty
* dev_select will mean it'll get picked. */
switch(src_ctx->type) {
#if CONFIG_VAAPI
case AV_HWDEVICE_TYPE_VAAPI: {
AVVAAPIDeviceContext *src_hwctx = src_ctx->hwctx;
const char *vendor = vaQueryVendorString(src_hwctx->display);
if (!vendor) {
av_log(ctx, AV_LOG_ERROR, "Unable to get device info from VAAPI!\n");
return AVERROR_EXTERNAL;
}
if (strstr(vendor, "AMD"))
dev_select.vendor_id = 0x1002;
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
#endif
#if CONFIG_LIBDRM
case AV_HWDEVICE_TYPE_DRM: {
int err;
struct stat drm_node_info;
drmDevice *drm_dev_info;
AVDRMDeviceContext *src_hwctx = src_ctx->hwctx;
err = fstat(src_hwctx->fd, &drm_node_info);
if (err) {
av_log(ctx, AV_LOG_ERROR, "Unable to get node info from DRM fd: %s!\n",
av_err2str(AVERROR(errno)));
return AVERROR_EXTERNAL;
}
dev_select.drm_major = major(drm_node_info.st_dev);
dev_select.drm_minor = minor(drm_node_info.st_dev);
dev_select.has_drm = 1;
err = drmGetDevice(src_hwctx->fd, &drm_dev_info);
if (err) {
av_log(ctx, AV_LOG_ERROR, "Unable to get device info from DRM fd: %s!\n",
av_err2str(AVERROR(errno)));
return AVERROR_EXTERNAL;
}
if (drm_dev_info->bustype == DRM_BUS_PCI)
dev_select.pci_device = drm_dev_info->deviceinfo.pci->device_id;
drmFreeDevice(&drm_dev_info);
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
#endif
#if CONFIG_CUDA
case AV_HWDEVICE_TYPE_CUDA: {
AVHWDeviceContext *cuda_cu = src_ctx;
AVCUDADeviceContext *src_hwctx = src_ctx->hwctx;
AVCUDADeviceContextInternal *cu_internal = src_hwctx->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
int ret = CHECK_CU(cu->cuDeviceGetUuid((CUuuid *)&dev_select.uuid,
cu_internal->cuda_device));
if (ret < 0) {
av_log(ctx, AV_LOG_ERROR, "Unable to get UUID from CUDA!\n");
return AVERROR_EXTERNAL;
}
dev_select.has_uuid = 1;
return vulkan_device_create_internal(ctx, &dev_select, opts, flags);
}
#endif
default:
return AVERROR(ENOSYS);
}
}
static int vulkan_frames_get_constraints(AVHWDeviceContext *ctx,
const void *hwconfig,
AVHWFramesConstraints *constraints)
{
int count = 0;
VulkanDevicePriv *p = ctx->internal->priv;
for (enum AVPixelFormat i = 0; i < nb_vk_formats_list; i++) {
count += vkfmt_from_pixfmt2(ctx, vk_formats_list[i].pixfmt,
p->use_linear_images ? VK_IMAGE_TILING_LINEAR :
VK_IMAGE_TILING_OPTIMAL,
NULL, NULL, NULL, NULL, 0) >= 0;
}
#if CONFIG_CUDA
if (p->dev_is_nvidia)
count++;
#endif
constraints->valid_sw_formats = av_malloc_array(count + 1,
sizeof(enum AVPixelFormat));
if (!constraints->valid_sw_formats)
return AVERROR(ENOMEM);
count = 0;
for (enum AVPixelFormat i = 0; i < nb_vk_formats_list; i++) {
if (vkfmt_from_pixfmt2(ctx, vk_formats_list[i].pixfmt,
p->use_linear_images ? VK_IMAGE_TILING_LINEAR :
VK_IMAGE_TILING_OPTIMAL,
NULL, NULL, NULL, NULL, 0) >= 0) {
constraints->valid_sw_formats[count++] = vk_formats_list[i].pixfmt;
}
}
#if CONFIG_CUDA
if (p->dev_is_nvidia)
constraints->valid_sw_formats[count++] = AV_PIX_FMT_CUDA;
#endif
constraints->valid_sw_formats[count++] = AV_PIX_FMT_NONE;
constraints->min_width = 1;
constraints->min_height = 1;
constraints->max_width = p->props.properties.limits.maxImageDimension2D;
constraints->max_height = p->props.properties.limits.maxImageDimension2D;
constraints->valid_hw_formats = av_malloc_array(2, sizeof(enum AVPixelFormat));
if (!constraints->valid_hw_formats)
return AVERROR(ENOMEM);
constraints->valid_hw_formats[0] = AV_PIX_FMT_VULKAN;
constraints->valid_hw_formats[1] = AV_PIX_FMT_NONE;
return 0;
}
static int alloc_mem(AVHWDeviceContext *ctx, VkMemoryRequirements *req,
VkMemoryPropertyFlagBits req_flags, const void *alloc_extension,
VkMemoryPropertyFlagBits *mem_flags, VkDeviceMemory *mem)
{
VkResult ret;
int index = -1;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVVulkanDeviceContext *dev_hwctx = ctx->hwctx;
VkMemoryAllocateInfo alloc_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO,
.pNext = alloc_extension,
.allocationSize = req->size,
};
/* The vulkan spec requires memory types to be sorted in the "optimal"
* order, so the first matching type we find will be the best/fastest one */
for (int i = 0; i < p->mprops.memoryTypeCount; i++) {
const VkMemoryType *type = &p->mprops.memoryTypes[i];
/* The memory type must be supported by the requirements (bitfield) */
if (!(req->memoryTypeBits & (1 << i)))
continue;
/* The memory type flags must include our properties */
if ((type->propertyFlags & req_flags) != req_flags)
continue;
/* The memory type must be large enough */
if (req->size > p->mprops.memoryHeaps[type->heapIndex].size)
continue;
/* Found a suitable memory type */
index = i;
break;
}
if (index < 0) {
av_log(ctx, AV_LOG_ERROR, "No memory type found for flags 0x%x\n",
req_flags);
return AVERROR(EINVAL);
}
alloc_info.memoryTypeIndex = index;
ret = vk->AllocateMemory(dev_hwctx->act_dev, &alloc_info,
dev_hwctx->alloc, mem);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory: %s\n",
ff_vk_ret2str(ret));
return AVERROR(ENOMEM);
}
*mem_flags |= p->mprops.memoryTypes[index].propertyFlags;
return 0;
}
static void vulkan_free_internal(AVVkFrame *f)
{
av_unused AVVkFrameInternal *internal = f->internal;
#if CONFIG_CUDA
if (internal->cuda_fc_ref) {
AVHWFramesContext *cuda_fc = (AVHWFramesContext *)internal->cuda_fc_ref->data;
int planes = av_pix_fmt_count_planes(cuda_fc->sw_format);
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
for (int i = 0; i < planes; i++) {
if (internal->cu_sem[i])
CHECK_CU(cu->cuDestroyExternalSemaphore(internal->cu_sem[i]));
if (internal->cu_mma[i])
CHECK_CU(cu->cuMipmappedArrayDestroy(internal->cu_mma[i]));
if (internal->ext_mem[i])
CHECK_CU(cu->cuDestroyExternalMemory(internal->ext_mem[i]));
#ifdef _WIN32
if (internal->ext_sem_handle[i])
CloseHandle(internal->ext_sem_handle[i]);
if (internal->ext_mem_handle[i])
CloseHandle(internal->ext_mem_handle[i]);
#endif
}
av_buffer_unref(&internal->cuda_fc_ref);
}
#endif
pthread_mutex_destroy(&internal->update_mutex);
av_freep(&f->internal);
}
static void vulkan_frame_free(void *opaque, uint8_t *data)
{
AVVkFrame *f = (AVVkFrame *)data;
AVHWFramesContext *hwfc = opaque;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
int nb_images = ff_vk_count_images(f);
VkSemaphoreWaitInfo sem_wait = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO,
.pSemaphores = f->sem,
.pValues = f->sem_value,
.semaphoreCount = nb_images,
};
vk->WaitSemaphores(hwctx->act_dev, &sem_wait, UINT64_MAX);
vulkan_free_internal(f);
for (int i = 0; i < nb_images; i++) {
vk->DestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc);
vk->FreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc);
vk->DestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc);
}
av_free(f);
}
static int alloc_bind_mem(AVHWFramesContext *hwfc, AVVkFrame *f,
void *alloc_pnext, size_t alloc_pnext_stride)
{
int img_cnt = 0, err;
VkResult ret;
AVHWDeviceContext *ctx = hwfc->device_ctx;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
VkBindImageMemoryInfo bind_info[AV_NUM_DATA_POINTERS] = { { 0 } };
AVVulkanDeviceContext *hwctx = ctx->hwctx;
while (f->img[img_cnt]) {
int use_ded_mem;
VkImageMemoryRequirementsInfo2 req_desc = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
.image = f->img[img_cnt],
};
VkMemoryDedicatedAllocateInfo ded_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,
.pNext = (void *)(((uint8_t *)alloc_pnext) + img_cnt*alloc_pnext_stride),
};
VkMemoryDedicatedRequirements ded_req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS,
};
VkMemoryRequirements2 req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
.pNext = &ded_req,
};
vk->GetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req);
if (f->tiling == VK_IMAGE_TILING_LINEAR)
req.memoryRequirements.size = FFALIGN(req.memoryRequirements.size,
p->props.properties.limits.minMemoryMapAlignment);
/* In case the implementation prefers/requires dedicated allocation */
use_ded_mem = ded_req.prefersDedicatedAllocation |
ded_req.requiresDedicatedAllocation;
if (use_ded_mem)
ded_alloc.image = f->img[img_cnt];
/* Allocate memory */
if ((err = alloc_mem(ctx, &req.memoryRequirements,
f->tiling == VK_IMAGE_TILING_LINEAR ?
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT :
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
use_ded_mem ? &ded_alloc : (void *)ded_alloc.pNext,
&f->flags, &f->mem[img_cnt])))
return err;
f->size[img_cnt] = req.memoryRequirements.size;
bind_info[img_cnt].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_info[img_cnt].image = f->img[img_cnt];
bind_info[img_cnt].memory = f->mem[img_cnt];
img_cnt++;
}
/* Bind the allocated memory to the images */
ret = vk->BindImageMemory2(hwctx->act_dev, img_cnt, bind_info);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
return 0;
}
enum PrepMode {
PREP_MODE_WRITE,
PREP_MODE_EXTERNAL_EXPORT,
PREP_MODE_EXTERNAL_IMPORT,
PREP_MODE_DECODING_DST,
PREP_MODE_DECODING_DPB,
};
static int prepare_frame(AVHWFramesContext *hwfc, FFVkExecPool *ectx,
AVVkFrame *frame, enum PrepMode pmode)
{
int err;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
VkImageMemoryBarrier2 img_bar[AV_NUM_DATA_POINTERS];
int nb_img_bar = 0;
uint32_t dst_qf = VK_QUEUE_FAMILY_IGNORED;
VkImageLayout new_layout;
VkAccessFlags2 new_access;
VkPipelineStageFlagBits2 src_stage = VK_PIPELINE_STAGE_2_NONE;
/* This is dirty - but it works. The vulkan.c dependency system doesn't
* free non-refcounted frames, and non-refcounted hardware frames cannot
* happen anywhere outside of here. */
AVBufferRef tmp_ref = {
.data = (uint8_t *)hwfc,
};
AVFrame tmp_frame = {
.data[0] = (uint8_t *)frame,
.hw_frames_ctx = &tmp_ref,
};
VkCommandBuffer cmd_buf;
FFVkExecContext *exec = ff_vk_exec_get(ectx);
cmd_buf = exec->buf;
ff_vk_exec_start(&p->vkctx, exec);
err = ff_vk_exec_add_dep_frame(&p->vkctx, exec, &tmp_frame,
VK_PIPELINE_STAGE_2_NONE,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT);
if (err < 0)
return err;
switch (pmode) {
case PREP_MODE_WRITE:
new_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
new_access = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case PREP_MODE_EXTERNAL_IMPORT:
new_layout = VK_IMAGE_LAYOUT_GENERAL;
new_access = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
break;
case PREP_MODE_EXTERNAL_EXPORT:
new_layout = VK_IMAGE_LAYOUT_GENERAL;
new_access = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
dst_qf = VK_QUEUE_FAMILY_EXTERNAL_KHR;
src_stage = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT;
break;
case PREP_MODE_DECODING_DST:
new_layout = VK_IMAGE_LAYOUT_VIDEO_DECODE_DST_KHR;
new_access = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case PREP_MODE_DECODING_DPB:
new_layout = VK_IMAGE_LAYOUT_VIDEO_DECODE_DPB_KHR;
new_access = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
break;
}
ff_vk_frame_barrier(&p->vkctx, exec, &tmp_frame, img_bar, &nb_img_bar,
src_stage,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
new_access, new_layout, dst_qf);
vk->CmdPipelineBarrier2(cmd_buf, &(VkDependencyInfo) {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pImageMemoryBarriers = img_bar,
.imageMemoryBarrierCount = nb_img_bar,
});
err = ff_vk_exec_submit(&p->vkctx, exec);
if (err < 0)
return err;
/* We can do this because there are no real dependencies */
ff_vk_exec_discard_deps(&p->vkctx, exec);
return 0;
}
static inline void get_plane_wh(uint32_t *w, uint32_t *h, enum AVPixelFormat format,
int frame_w, int frame_h, int plane)
{
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
/* Currently always true unless gray + alpha support is added */
if (!plane || (plane == 3) || desc->flags & AV_PIX_FMT_FLAG_RGB ||
!(desc->flags & AV_PIX_FMT_FLAG_PLANAR)) {
*w = frame_w;
*h = frame_h;
return;
}
*w = AV_CEIL_RSHIFT(frame_w, desc->log2_chroma_w);
*h = AV_CEIL_RSHIFT(frame_h, desc->log2_chroma_h);
}
static int create_frame(AVHWFramesContext *hwfc, AVVkFrame **frame,
VkImageTiling tiling, VkImageUsageFlagBits usage,
VkImageCreateFlags flags, int nb_layers,
void *create_pnext)
{
int err;
VkResult ret;
AVVulkanFramesContext *hwfc_vk = hwfc->hwctx;
AVHWDeviceContext *ctx = hwfc->device_ctx;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VkExportSemaphoreCreateInfo ext_sem_info = {
.sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO,
#ifdef _WIN32
.handleTypes = IsWindows8OrGreater()
? VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT
: VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
#else
.handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT,
#endif
};
VkSemaphoreTypeCreateInfo sem_type_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO,
#ifdef _WIN32
.pNext = p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_SEM ? &ext_sem_info : NULL,
#else
.pNext = p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_SEM ? &ext_sem_info : NULL,
#endif
.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE,
.initialValue = 0,
};
VkSemaphoreCreateInfo sem_spawn = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = &sem_type_info,
};
AVVkFrame *f = av_vk_frame_alloc();
if (!f) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n");
return AVERROR(ENOMEM);
}
// TODO: check witdh and height for alignment in case of multiplanar (must be mod-2 if subsampled)
/* Create the images */
for (int i = 0; (hwfc_vk->format[i] != VK_FORMAT_UNDEFINED); i++) {
VkImageCreateInfo create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = create_pnext,
.imageType = VK_IMAGE_TYPE_2D,
.format = hwfc_vk->format[i],
.extent.depth = 1,
.mipLevels = 1,
.arrayLayers = nb_layers,
.flags = flags,
.tiling = tiling,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.usage = usage,
.samples = VK_SAMPLE_COUNT_1_BIT,
.pQueueFamilyIndices = p->img_qfs,
.queueFamilyIndexCount = p->nb_img_qfs,
.sharingMode = p->nb_img_qfs > 1 ? VK_SHARING_MODE_CONCURRENT :
VK_SHARING_MODE_EXCLUSIVE,
};
get_plane_wh(&create_info.extent.width, &create_info.extent.height,
hwfc->sw_format, hwfc->width, hwfc->height, i);
ret = vk->CreateImage(hwctx->act_dev, &create_info,
hwctx->alloc, &f->img[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n",
ff_vk_ret2str(ret));
err = AVERROR(EINVAL);
goto fail;
}
/* Create semaphore */
ret = vk->CreateSemaphore(hwctx->act_dev, &sem_spawn,
hwctx->alloc, &f->sem[i]);
if (ret != VK_SUCCESS) {
av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
f->queue_family[i] = p->nb_img_qfs > 1 ? VK_QUEUE_FAMILY_IGNORED : p->img_qfs[0];
f->layout[i] = create_info.initialLayout;
f->access[i] = 0x0;
f->sem_value[i] = 0;
}
f->flags = 0x0;
f->tiling = tiling;
*frame = f;
return 0;
fail:
vulkan_frame_free(hwfc, (uint8_t *)f);
return err;
}
/* Checks if an export flag is enabled, and if it is ORs it with *iexp */
static void try_export_flags(AVHWFramesContext *hwfc,
VkExternalMemoryHandleTypeFlags *comp_handle_types,
VkExternalMemoryHandleTypeFlagBits *iexp,
VkExternalMemoryHandleTypeFlagBits exp)
{
VkResult ret;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
AVVulkanDeviceContext *dev_hwctx = hwfc->device_ctx->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
const VkImageDrmFormatModifierListCreateInfoEXT *drm_mod_info =
ff_vk_find_struct(hwctx->create_pnext,
VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
int has_mods = hwctx->tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT && drm_mod_info;
int nb_mods;
VkExternalImageFormatProperties eprops = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR,
};
VkImageFormatProperties2 props = {
.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2,
.pNext = &eprops,
};
VkPhysicalDeviceImageDrmFormatModifierInfoEXT phy_dev_mod_info = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT,
.pNext = NULL,
.pQueueFamilyIndices = p->img_qfs,
.queueFamilyIndexCount = p->nb_img_qfs,
.sharingMode = p->nb_img_qfs > 1 ? VK_SHARING_MODE_CONCURRENT :
VK_SHARING_MODE_EXCLUSIVE,
};
VkPhysicalDeviceExternalImageFormatInfo enext = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO,
.handleType = exp,
.pNext = has_mods ? &phy_dev_mod_info : NULL,
};
VkPhysicalDeviceImageFormatInfo2 pinfo = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
.pNext = !exp ? NULL : &enext,
.format = av_vkfmt_from_pixfmt(hwfc->sw_format)[0],
.type = VK_IMAGE_TYPE_2D,
.tiling = hwctx->tiling,
.usage = hwctx->usage,
.flags = VK_IMAGE_CREATE_ALIAS_BIT,
};
nb_mods = has_mods ? drm_mod_info->drmFormatModifierCount : 1;
for (int i = 0; i < nb_mods; i++) {
if (has_mods)
phy_dev_mod_info.drmFormatModifier = drm_mod_info->pDrmFormatModifiers[i];
ret = vk->GetPhysicalDeviceImageFormatProperties2(dev_hwctx->phys_dev,
&pinfo, &props);
if (ret == VK_SUCCESS) {
*iexp |= exp;
*comp_handle_types |= eprops.externalMemoryProperties.compatibleHandleTypes;
}
}
}
static AVBufferRef *vulkan_pool_alloc(void *opaque, size_t size)
{
int err;
AVVkFrame *f;
AVBufferRef *avbuf = NULL;
AVHWFramesContext *hwfc = opaque;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
VulkanFramesPriv *fp = hwfc->internal->priv;
VkExternalMemoryHandleTypeFlags e = 0x0;
VkExportMemoryAllocateInfo eminfo[AV_NUM_DATA_POINTERS];
VkExternalMemoryImageCreateInfo eiinfo = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO,
.pNext = hwctx->create_pnext,
};
#ifdef _WIN32
if (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_MEMORY)
try_export_flags(hwfc, &eiinfo.handleTypes, &e, IsWindows8OrGreater()
? VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT
: VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT);
#else
if (p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_MEMORY)
try_export_flags(hwfc, &eiinfo.handleTypes, &e,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT);
#endif
for (int i = 0; i < av_pix_fmt_count_planes(hwfc->sw_format); i++) {
eminfo[i].sType = VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO;
eminfo[i].pNext = hwctx->alloc_pnext[i];
eminfo[i].handleTypes = e;
}
err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage, hwctx->img_flags,
hwctx->nb_layers, eiinfo.handleTypes ? &eiinfo : NULL);
if (err)
return NULL;
err = alloc_bind_mem(hwfc, f, eminfo, sizeof(*eminfo));
if (err)
goto fail;
if ( (hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR) &&
!(hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR))
err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_DECODING_DPB);
else if (hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR)
err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_DECODING_DST);
else
err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_WRITE);
if (err)
goto fail;
avbuf = av_buffer_create((uint8_t *)f, sizeof(AVVkFrame),
vulkan_frame_free, hwfc, 0);
if (!avbuf)
goto fail;
return avbuf;
fail:
vulkan_frame_free(hwfc, (uint8_t *)f);
return NULL;
}
static void lock_frame(AVHWFramesContext *fc, AVVkFrame *vkf)
{
pthread_mutex_lock(&vkf->internal->update_mutex);
}
static void unlock_frame(AVHWFramesContext *fc, AVVkFrame *vkf)
{
pthread_mutex_unlock(&vkf->internal->update_mutex);
}
static void vulkan_frames_uninit(AVHWFramesContext *hwfc)
{
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
VulkanFramesPriv *fp = hwfc->internal->priv;
if (fp->modifier_info) {
if (fp->modifier_info->pDrmFormatModifiers)
av_freep(&fp->modifier_info->pDrmFormatModifiers);
av_freep(&fp->modifier_info);
}
ff_vk_exec_pool_free(&p->vkctx, &fp->compute_exec);
ff_vk_exec_pool_free(&p->vkctx, &fp->upload_exec);
ff_vk_exec_pool_free(&p->vkctx, &fp->download_exec);
}
static int vulkan_frames_init(AVHWFramesContext *hwfc)
{
int err;
AVVkFrame *f;
AVVulkanFramesContext *hwctx = hwfc->hwctx;
VulkanFramesPriv *fp = hwfc->internal->priv;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
VkImageUsageFlagBits supported_usage;
const struct FFVkFormatEntry *fmt;
int disable_multiplane = p->disable_multiplane ||
(hwctx->flags & AV_VK_FRAME_FLAG_DISABLE_MULTIPLANE);
/* Defaults */
if (!hwctx->nb_layers)
hwctx->nb_layers = 1;
/* VK_IMAGE_TILING_OPTIMAL == 0, can't check for it really */
if (p->use_linear_images &&
(hwctx->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT))
hwctx->tiling = VK_IMAGE_TILING_LINEAR;
fmt = vk_find_format_entry(hwfc->sw_format);
if (!fmt) {
av_log(hwfc, AV_LOG_ERROR, "Unsupported pixel format: %s!\n",
av_get_pix_fmt_name(hwfc->sw_format));
return AVERROR(EINVAL);
}
if (hwctx->format[0] != VK_FORMAT_UNDEFINED) {
if (hwctx->format[0] != fmt->vkf) {
for (int i = 0; i < fmt->nb_images_fallback; i++) {
if (hwctx->format[i] != fmt->fallback[i]) {
av_log(hwfc, AV_LOG_ERROR, "Incompatible Vulkan format given "
"for the current sw_format %s!\n",
av_get_pix_fmt_name(hwfc->sw_format));
return AVERROR(EINVAL);
}
}
}
/* Check if the sw_format itself is supported */
err = vkfmt_from_pixfmt2(hwfc->device_ctx, hwfc->sw_format,
hwctx->tiling, NULL,
NULL, NULL, &supported_usage, 0);
if (err < 0) {
av_log(hwfc, AV_LOG_ERROR, "Unsupported sw format: %s!\n",
av_get_pix_fmt_name(hwfc->sw_format));
return AVERROR(EINVAL);
}
} else {
err = vkfmt_from_pixfmt2(hwfc->device_ctx, hwfc->sw_format,
hwctx->tiling, hwctx->format, NULL,
NULL, &supported_usage,
disable_multiplane);
if (err < 0)
return err;
}
/* Image usage flags */
if (!hwctx->usage) {
hwctx->usage = supported_usage & (VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_STORAGE_BIT |
VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_VIDEO_ENCODE_SRC_BIT_KHR);
}
/* Image creation flags.
* Only fill them in automatically if the image is not going to be used as
* a DPB-only image, and we have SAMPLED/STORAGE bits set. */
if (!hwctx->img_flags) {
int is_lone_dpb = (hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DPB_BIT_KHR) &&
!(hwctx->usage & VK_IMAGE_USAGE_VIDEO_DECODE_DST_BIT_KHR);
int sampleable = hwctx->usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_STORAGE_BIT);
if (sampleable && !is_lone_dpb) {
hwctx->img_flags = VK_IMAGE_CREATE_ALIAS_BIT;
if ((fmt->vk_planes > 1) && (hwctx->format[0] == fmt->vkf))
hwctx->img_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT |
VK_IMAGE_CREATE_EXTENDED_USAGE_BIT;
}
}
if (!hwctx->lock_frame)
hwctx->lock_frame = lock_frame;
if (!hwctx->unlock_frame)
hwctx->unlock_frame = unlock_frame;
err = ff_vk_exec_pool_init(&p->vkctx, &p->compute_qf, &fp->compute_exec,
p->compute_qf.nb_queues*4, 0, 0, 0, NULL);
if (err)
return err;
err = ff_vk_exec_pool_init(&p->vkctx, &p->transfer_qf, &fp->upload_exec,
p->transfer_qf.nb_queues*4, 0, 0, 0, NULL);
if (err)
return err;
err = ff_vk_exec_pool_init(&p->vkctx, &p->transfer_qf, &fp->download_exec,
p->transfer_qf.nb_queues*4, 0, 0, 0, NULL);
if (err)
return err;
/* Test to see if allocation will fail */
err = create_frame(hwfc, &f, hwctx->tiling, hwctx->usage, hwctx->img_flags,
hwctx->nb_layers, hwctx->create_pnext);
if (err)
return err;
vulkan_frame_free(hwfc, (uint8_t *)f);
/* If user did not specify a pool, hwfc->pool will be set to the internal one
* in hwcontext.c just after this gets called */
if (!hwfc->pool) {
hwfc->internal->pool_internal = av_buffer_pool_init2(sizeof(AVVkFrame),
hwfc, vulkan_pool_alloc,
NULL);
if (!hwfc->internal->pool_internal)
return AVERROR(ENOMEM);
}
return 0;
}
static int vulkan_get_buffer(AVHWFramesContext *hwfc, AVFrame *frame)
{
frame->buf[0] = av_buffer_pool_get(hwfc->pool);
if (!frame->buf[0])
return AVERROR(ENOMEM);
frame->data[0] = frame->buf[0]->data;
frame->format = AV_PIX_FMT_VULKAN;
frame->width = hwfc->width;
frame->height = hwfc->height;
return 0;
}
static int vulkan_transfer_get_formats(AVHWFramesContext *hwfc,
enum AVHWFrameTransferDirection dir,
enum AVPixelFormat **formats)
{
enum AVPixelFormat *fmts = av_malloc_array(2, sizeof(*fmts));
if (!fmts)
return AVERROR(ENOMEM);
fmts[0] = hwfc->sw_format;
fmts[1] = AV_PIX_FMT_NONE;
*formats = fmts;
return 0;
}
#if CONFIG_LIBDRM
static void vulkan_unmap_from_drm(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
AVVkFrame *f = hwmap->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
const int nb_images = ff_vk_count_images(f);
VkSemaphoreWaitInfo wait_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO,
.flags = 0x0,
.pSemaphores = f->sem,
.pValues = f->sem_value,
.semaphoreCount = nb_images,
};
vk->WaitSemaphores(hwctx->act_dev, &wait_info, UINT64_MAX);
vulkan_free_internal(f);
for (int i = 0; i < nb_images; i++) {
vk->DestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc);
vk->FreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc);
vk->DestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc);
}
av_free(f);
}
static const struct {
uint32_t drm_fourcc;
VkFormat vk_format;
} vulkan_drm_format_map[] = {
{ DRM_FORMAT_R8, VK_FORMAT_R8_UNORM },
{ DRM_FORMAT_R16, VK_FORMAT_R16_UNORM },
{ DRM_FORMAT_GR88, VK_FORMAT_R8G8_UNORM },
{ DRM_FORMAT_RG88, VK_FORMAT_R8G8_UNORM },
{ DRM_FORMAT_GR1616, VK_FORMAT_R16G16_UNORM },
{ DRM_FORMAT_RG1616, VK_FORMAT_R16G16_UNORM },
{ DRM_FORMAT_ARGB8888, VK_FORMAT_B8G8R8A8_UNORM },
{ DRM_FORMAT_XRGB8888, VK_FORMAT_B8G8R8A8_UNORM },
{ DRM_FORMAT_ABGR8888, VK_FORMAT_R8G8B8A8_UNORM },
{ DRM_FORMAT_XBGR8888, VK_FORMAT_R8G8B8A8_UNORM },
// All these DRM_FORMATs were added in the same libdrm commit.
#ifdef DRM_FORMAT_XYUV8888
{ DRM_FORMAT_XYUV8888, VK_FORMAT_R8G8B8A8_UNORM },
{ DRM_FORMAT_XVYU12_16161616, VK_FORMAT_R16G16B16A16_UNORM} ,
// As we had to map XV36 to a 16bit Vulkan format, reverse mapping will
// end up yielding Y416 as the DRM format, so we need to recognise it.
{ DRM_FORMAT_Y416, VK_FORMAT_R16G16B16A16_UNORM },
#endif
};
static inline VkFormat drm_to_vulkan_fmt(uint32_t drm_fourcc)
{
for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++)
if (vulkan_drm_format_map[i].drm_fourcc == drm_fourcc)
return vulkan_drm_format_map[i].vk_format;
return VK_FORMAT_UNDEFINED;
}
static int vulkan_map_from_drm_frame_desc(AVHWFramesContext *hwfc, AVVkFrame **frame,
const AVFrame *src)
{
int err = 0;
VkResult ret;
AVVkFrame *f;
int bind_counts = 0;
AVHWDeviceContext *ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
VulkanFramesPriv *fp = hwfc->internal->priv;
const AVDRMFrameDescriptor *desc = (AVDRMFrameDescriptor *)src->data[0];
VkBindImageMemoryInfo bind_info[AV_DRM_MAX_PLANES];
VkBindImagePlaneMemoryInfo plane_info[AV_DRM_MAX_PLANES];
for (int i = 0; i < desc->nb_layers; i++) {
if (drm_to_vulkan_fmt(desc->layers[i].format) == VK_FORMAT_UNDEFINED) {
av_log(ctx, AV_LOG_ERROR, "Unsupported DMABUF layer format %#08x!\n",
desc->layers[i].format);
return AVERROR(EINVAL);
}
}
if (!(f = av_vk_frame_alloc())) {
av_log(ctx, AV_LOG_ERROR, "Unable to allocate memory for AVVkFrame!\n");
err = AVERROR(ENOMEM);
goto fail;
}
f->tiling = VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT;
for (int i = 0; i < desc->nb_layers; i++) {
const int planes = desc->layers[i].nb_planes;
/* Semaphore */
VkSemaphoreTypeCreateInfo sem_type_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO,
.semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE,
.initialValue = 0,
};
VkSemaphoreCreateInfo sem_spawn = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = &sem_type_info,
};
/* Image creation */
VkSubresourceLayout ext_img_layouts[AV_DRM_MAX_PLANES];
VkImageDrmFormatModifierExplicitCreateInfoEXT ext_img_mod_spec = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT,
.drmFormatModifier = desc->objects[0].format_modifier,
.drmFormatModifierPlaneCount = planes,
.pPlaneLayouts = (const VkSubresourceLayout *)&ext_img_layouts,
};
VkExternalMemoryImageCreateInfo ext_img_spec = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_IMAGE_CREATE_INFO,
.pNext = &ext_img_mod_spec,
.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
};
VkImageCreateInfo create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = &ext_img_spec,
.imageType = VK_IMAGE_TYPE_2D,
.format = drm_to_vulkan_fmt(desc->layers[i].format),
.extent.depth = 1,
.mipLevels = 1,
.arrayLayers = 1,
.flags = 0x0,
.tiling = VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT,
.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, /* specs say so */
.usage = VK_IMAGE_USAGE_SAMPLED_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
.samples = VK_SAMPLE_COUNT_1_BIT,
.pQueueFamilyIndices = p->img_qfs,
.queueFamilyIndexCount = p->nb_img_qfs,
.sharingMode = p->nb_img_qfs > 1 ? VK_SHARING_MODE_CONCURRENT :
VK_SHARING_MODE_EXCLUSIVE,
};
/* Image format verification */
VkExternalImageFormatProperties ext_props = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_IMAGE_FORMAT_PROPERTIES_KHR,
};
VkImageFormatProperties2 props_ret = {
.sType = VK_STRUCTURE_TYPE_IMAGE_FORMAT_PROPERTIES_2,
.pNext = &ext_props,
};
VkPhysicalDeviceImageDrmFormatModifierInfoEXT props_drm_mod = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_DRM_FORMAT_MODIFIER_INFO_EXT,
.drmFormatModifier = ext_img_mod_spec.drmFormatModifier,
.pQueueFamilyIndices = create_info.pQueueFamilyIndices,
.queueFamilyIndexCount = create_info.queueFamilyIndexCount,
.sharingMode = create_info.sharingMode,
};
VkPhysicalDeviceExternalImageFormatInfo props_ext = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_IMAGE_FORMAT_INFO,
.pNext = &props_drm_mod,
.handleType = ext_img_spec.handleTypes,
};
VkPhysicalDeviceImageFormatInfo2 fmt_props = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_IMAGE_FORMAT_INFO_2,
.pNext = &props_ext,
.format = create_info.format,
.type = create_info.imageType,
.tiling = create_info.tiling,
.usage = create_info.usage,
.flags = create_info.flags,
};
/* Check if importing is possible for this combination of parameters */
ret = vk->GetPhysicalDeviceImageFormatProperties2(hwctx->phys_dev,
&fmt_props, &props_ret);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Cannot map DRM frame to Vulkan: %s\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
/* Set the image width/height */
get_plane_wh(&create_info.extent.width, &create_info.extent.height,
hwfc->sw_format, src->width, src->height, i);
/* Set the subresource layout based on the layer properties */
for (int j = 0; j < planes; j++) {
ext_img_layouts[j].offset = desc->layers[i].planes[j].offset;
ext_img_layouts[j].rowPitch = desc->layers[i].planes[j].pitch;
ext_img_layouts[j].size = 0; /* The specs say so for all 3 */
ext_img_layouts[j].arrayPitch = 0;
ext_img_layouts[j].depthPitch = 0;
}
/* Create image */
ret = vk->CreateImage(hwctx->act_dev, &create_info,
hwctx->alloc, &f->img[i]);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Image creation failure: %s\n",
ff_vk_ret2str(ret));
err = AVERROR(EINVAL);
goto fail;
}
ret = vk->CreateSemaphore(hwctx->act_dev, &sem_spawn,
hwctx->alloc, &f->sem[i]);
if (ret != VK_SUCCESS) {
av_log(hwctx, AV_LOG_ERROR, "Failed to create semaphore: %s\n",
ff_vk_ret2str(ret));
return AVERROR_EXTERNAL;
}
/* We'd import a semaphore onto the one we created using
* vkImportSemaphoreFdKHR but unfortunately neither DRM nor VAAPI
* offer us anything we could import and sync with, so instead
* just signal the semaphore we created. */
f->queue_family[i] = p->nb_img_qfs > 1 ? VK_QUEUE_FAMILY_IGNORED : p->img_qfs[0];
f->layout[i] = create_info.initialLayout;
f->access[i] = 0x0;
f->sem_value[i] = 0;
}
for (int i = 0; i < desc->nb_layers; i++) {
/* Memory requirements */
VkImageMemoryRequirementsInfo2 req_desc = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2,
.image = f->img[i],
};
VkMemoryDedicatedRequirements ded_req = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS,
};
VkMemoryRequirements2 req2 = {
.sType = VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2,
.pNext = &ded_req,
};
/* Allocation/importing */
VkMemoryFdPropertiesKHR fdmp = {
.sType = VK_STRUCTURE_TYPE_MEMORY_FD_PROPERTIES_KHR,
};
/* This assumes that a layer will never be constructed from multiple
* objects. If that was to happen in the real world, this code would
* need to import each plane separately.
*/
VkImportMemoryFdInfoKHR idesc = {
.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_FD_INFO_KHR,
.fd = dup(desc->objects[desc->layers[i].planes[0].object_index].fd),
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
};
VkMemoryDedicatedAllocateInfo ded_alloc = {
.sType = VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO,
.pNext = &idesc,
.image = req_desc.image,
};
/* Get object properties */
ret = vk->GetMemoryFdPropertiesKHR(hwctx->act_dev,
VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
idesc.fd, &fdmp);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to get FD properties: %s\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL;
close(idesc.fd);
goto fail;
}
vk->GetImageMemoryRequirements2(hwctx->act_dev, &req_desc, &req2);
/* Only a single bit must be set, not a range, and it must match */
req2.memoryRequirements.memoryTypeBits = fdmp.memoryTypeBits;
err = alloc_mem(ctx, &req2.memoryRequirements,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
(ded_req.prefersDedicatedAllocation ||
ded_req.requiresDedicatedAllocation) ?
&ded_alloc : ded_alloc.pNext,
&f->flags, &f->mem[i]);
if (err) {
close(idesc.fd);
return err;
}
f->size[i] = req2.memoryRequirements.size;
}
for (int i = 0; i < desc->nb_layers; i++) {
const int planes = desc->layers[i].nb_planes;
for (int j = 0; j < planes; j++) {
VkImageAspectFlagBits aspect = j == 0 ? VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT :
j == 1 ? VK_IMAGE_ASPECT_MEMORY_PLANE_1_BIT_EXT :
VK_IMAGE_ASPECT_MEMORY_PLANE_2_BIT_EXT;
plane_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO;
plane_info[bind_counts].pNext = NULL;
plane_info[bind_counts].planeAspect = aspect;
bind_info[bind_counts].sType = VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO;
bind_info[bind_counts].pNext = planes > 1 ? &plane_info[bind_counts] : NULL;
bind_info[bind_counts].image = f->img[i];
bind_info[bind_counts].memory = f->mem[i];
/* Offset is already signalled via pPlaneLayouts above */
bind_info[bind_counts].memoryOffset = 0;
bind_counts++;
}
}
/* Bind the allocated memory to the images */
ret = vk->BindImageMemory2(hwctx->act_dev, bind_counts, bind_info);
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to bind memory: %s\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_EXTERNAL_IMPORT);
if (err)
goto fail;
*frame = f;
return 0;
fail:
for (int i = 0; i < desc->nb_layers; i++) {
vk->DestroyImage(hwctx->act_dev, f->img[i], hwctx->alloc);
vk->DestroySemaphore(hwctx->act_dev, f->sem[i], hwctx->alloc);
}
for (int i = 0; i < desc->nb_objects; i++)
vk->FreeMemory(hwctx->act_dev, f->mem[i], hwctx->alloc);
av_free(f);
return err;
}
static int vulkan_map_from_drm(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err = 0;
AVVkFrame *f;
if ((err = vulkan_map_from_drm_frame_desc(hwfc, &f, src)))
return err;
/* The unmapping function will free this */
dst->data[0] = (uint8_t *)f;
dst->width = src->width;
dst->height = src->height;
err = ff_hwframe_map_create(dst->hw_frames_ctx, dst, src,
&vulkan_unmap_from_drm, f);
if (err < 0)
goto fail;
av_log(hwfc, AV_LOG_DEBUG, "Mapped DRM object to Vulkan!\n");
return 0;
fail:
vulkan_frame_free(hwfc->device_ctx->hwctx, (uint8_t *)f);
dst->data[0] = NULL;
return err;
}
#if CONFIG_VAAPI
static int vulkan_map_from_vaapi(AVHWFramesContext *dst_fc,
AVFrame *dst, const AVFrame *src,
int flags)
{
int err;
AVFrame *tmp = av_frame_alloc();
AVHWFramesContext *vaapi_fc = (AVHWFramesContext*)src->hw_frames_ctx->data;
AVVAAPIDeviceContext *vaapi_ctx = vaapi_fc->device_ctx->hwctx;
VASurfaceID surface_id = (VASurfaceID)(uintptr_t)src->data[3];
if (!tmp)
return AVERROR(ENOMEM);
/* We have to sync since like the previous comment said, no semaphores */
vaSyncSurface(vaapi_ctx->display, surface_id);
tmp->format = AV_PIX_FMT_DRM_PRIME;
err = av_hwframe_map(tmp, src, flags);
if (err < 0)
goto fail;
err = vulkan_map_from_drm(dst_fc, dst, tmp, flags);
if (err < 0)
goto fail;
err = ff_hwframe_map_replace(dst, src);
fail:
av_frame_free(&tmp);
return err;
}
#endif
#endif
#if CONFIG_CUDA
static int vulkan_export_to_cuda(AVHWFramesContext *hwfc,
AVBufferRef *cuda_hwfc,
const AVFrame *frame)
{
int err;
VkResult ret;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
AVHWDeviceContext *ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = ctx->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
VulkanDevicePriv *p = ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)cuda_hwfc->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
CUarray_format cufmt = desc->comp[0].depth > 8 ? CU_AD_FORMAT_UNSIGNED_INT16 :
CU_AD_FORMAT_UNSIGNED_INT8;
dst_f = (AVVkFrame *)frame->data[0];
dst_int = dst_f->internal;
if (!dst_int->cuda_fc_ref) {
dst_int->cuda_fc_ref = av_buffer_ref(cuda_hwfc);
if (!dst_int->cuda_fc_ref)
return AVERROR(ENOMEM);
for (int i = 0; i < planes; i++) {
CUDA_EXTERNAL_MEMORY_MIPMAPPED_ARRAY_DESC tex_desc = {
.offset = 0,
.arrayDesc = {
.Depth = 0,
.Format = cufmt,
.NumChannels = 1 + ((planes == 2) && i),
.Flags = 0,
},
.numLevels = 1,
};
int p_w, p_h;
#ifdef _WIN32
CUDA_EXTERNAL_MEMORY_HANDLE_DESC ext_desc = {
.type = IsWindows8OrGreater()
? CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32
: CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT,
.size = dst_f->size[i],
};
VkMemoryGetWin32HandleInfoKHR export_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_GET_WIN32_HANDLE_INFO_KHR,
.memory = dst_f->mem[i],
.handleType = IsWindows8OrGreater()
? VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT
: VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
};
VkSemaphoreGetWin32HandleInfoKHR sem_export = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_WIN32_HANDLE_INFO_KHR,
.semaphore = dst_f->sem[i],
.handleType = IsWindows8OrGreater()
? VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT
: VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT,
};
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC ext_sem_desc = {
.type = 10 /* TODO: CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_WIN32 */,
};
ret = vk->GetMemoryWin32HandleKHR(hwctx->act_dev, &export_info,
&ext_desc.handle.win32.handle);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a Win32 Handle: %s!\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
dst_int->ext_mem_handle[i] = ext_desc.handle.win32.handle;
#else
CUDA_EXTERNAL_MEMORY_HANDLE_DESC ext_desc = {
.type = CU_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD,
.size = dst_f->size[i],
};
VkMemoryGetFdInfoKHR export_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR,
.memory = dst_f->mem[i],
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR,
};
VkSemaphoreGetFdInfoKHR sem_export = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_GET_FD_INFO_KHR,
.semaphore = dst_f->sem[i],
.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT,
};
CUDA_EXTERNAL_SEMAPHORE_HANDLE_DESC ext_sem_desc = {
.type = 9 /* TODO: CU_EXTERNAL_SEMAPHORE_HANDLE_TYPE_TIMELINE_SEMAPHORE_FD */,
};
ret = vk->GetMemoryFdKHR(hwctx->act_dev, &export_info,
&ext_desc.handle.fd);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD: %s!\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
#endif
ret = CHECK_CU(cu->cuImportExternalMemory(&dst_int->ext_mem[i], &ext_desc));
if (ret < 0) {
#ifndef _WIN32
close(ext_desc.handle.fd);
#endif
err = AVERROR_EXTERNAL;
goto fail;
}
get_plane_wh(&p_w, &p_h, hwfc->sw_format, hwfc->width, hwfc->height, i);
tex_desc.arrayDesc.Width = p_w;
tex_desc.arrayDesc.Height = p_h;
ret = CHECK_CU(cu->cuExternalMemoryGetMappedMipmappedArray(&dst_int->cu_mma[i],
dst_int->ext_mem[i],
&tex_desc));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
ret = CHECK_CU(cu->cuMipmappedArrayGetLevel(&dst_int->cu_array[i],
dst_int->cu_mma[i], 0));
if (ret < 0) {
err = AVERROR_EXTERNAL;
goto fail;
}
#ifdef _WIN32
ret = vk->GetSemaphoreWin32HandleKHR(hwctx->act_dev, &sem_export,
&ext_sem_desc.handle.win32.handle);
#else
ret = vk->GetSemaphoreFdKHR(hwctx->act_dev, &sem_export,
&ext_sem_desc.handle.fd);
#endif
if (ret != VK_SUCCESS) {
av_log(ctx, AV_LOG_ERROR, "Failed to export semaphore: %s\n",
ff_vk_ret2str(ret));
err = AVERROR_EXTERNAL;
goto fail;
}
#ifdef _WIN32
dst_int->ext_sem_handle[i] = ext_sem_desc.handle.win32.handle;
#endif
ret = CHECK_CU(cu->cuImportExternalSemaphore(&dst_int->cu_sem[i],
&ext_sem_desc));
if (ret < 0) {
#ifndef _WIN32
close(ext_sem_desc.handle.fd);
#endif
err = AVERROR_EXTERNAL;
goto fail;
}
}
}
return 0;
fail:
vulkan_free_internal(dst_f);
return err;
}
static int vulkan_transfer_data_from_cuda(AVHWFramesContext *hwfc,
AVFrame *dst, const AVFrame *src)
{
int err;
CUcontext dummy;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
VulkanFramesPriv *fp = hwfc->internal->priv;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)src->hw_frames_ctx->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS s_w_par[AV_NUM_DATA_POINTERS] = { 0 };
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS s_s_par[AV_NUM_DATA_POINTERS] = { 0 };
dst_f = (AVVkFrame *)dst->data[0];
err = prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_EXPORT);
if (err < 0)
return err;
err = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx));
if (err < 0)
return err;
err = vulkan_export_to_cuda(hwfc, src->hw_frames_ctx, dst);
if (err < 0) {
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
return err;
}
dst_int = dst_f->internal;
for (int i = 0; i < planes; i++) {
s_w_par[i].params.fence.value = dst_f->sem_value[i] + 0;
s_s_par[i].params.fence.value = dst_f->sem_value[i] + 1;
}
err = CHECK_CU(cu->cuWaitExternalSemaphoresAsync(dst_int->cu_sem, s_w_par,
planes, cuda_dev->stream));
if (err < 0)
goto fail;
for (int i = 0; i < planes; i++) {
CUDA_MEMCPY2D cpy = {
.srcMemoryType = CU_MEMORYTYPE_DEVICE,
.srcDevice = (CUdeviceptr)src->data[i],
.srcPitch = src->linesize[i],
.srcY = 0,
.dstMemoryType = CU_MEMORYTYPE_ARRAY,
.dstArray = dst_int->cu_array[i],
};
int p_w, p_h;
get_plane_wh(&p_w, &p_h, hwfc->sw_format, hwfc->width, hwfc->height, i);
cpy.WidthInBytes = p_w * desc->comp[i].step;
cpy.Height = p_h;
err = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream));
if (err < 0)
goto fail;
}
err = CHECK_CU(cu->cuSignalExternalSemaphoresAsync(dst_int->cu_sem, s_s_par,
planes, cuda_dev->stream));
if (err < 0)
goto fail;
for (int i = 0; i < planes; i++)
dst_f->sem_value[i]++;
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
av_log(hwfc, AV_LOG_VERBOSE, "Transfered CUDA image to Vulkan!\n");
return err = prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_IMPORT);
fail:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
vulkan_free_internal(dst_f);
dst_f->internal = NULL;
av_buffer_unref(&dst->buf[0]);
return err;
}
#endif
static int vulkan_map_to(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (src->format) {
#if CONFIG_LIBDRM
#if CONFIG_VAAPI
case AV_PIX_FMT_VAAPI:
if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS)
return vulkan_map_from_vaapi(hwfc, dst, src, flags);
else
return AVERROR(ENOSYS);
#endif
case AV_PIX_FMT_DRM_PRIME:
if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS)
return vulkan_map_from_drm(hwfc, dst, src, flags);
else
return AVERROR(ENOSYS);
#endif
default:
return AVERROR(ENOSYS);
}
}
#if CONFIG_LIBDRM
typedef struct VulkanDRMMapping {
AVDRMFrameDescriptor drm_desc;
AVVkFrame *source;
} VulkanDRMMapping;
static void vulkan_unmap_to_drm(AVHWFramesContext *hwfc, HWMapDescriptor *hwmap)
{
AVDRMFrameDescriptor *drm_desc = hwmap->priv;
for (int i = 0; i < drm_desc->nb_objects; i++)
close(drm_desc->objects[i].fd);
av_free(drm_desc);
}
static inline uint32_t vulkan_fmt_to_drm(VkFormat vkfmt)
{
for (int i = 0; i < FF_ARRAY_ELEMS(vulkan_drm_format_map); i++)
if (vulkan_drm_format_map[i].vk_format == vkfmt)
return vulkan_drm_format_map[i].drm_fourcc;
return DRM_FORMAT_INVALID;
}
static int vulkan_map_to_drm(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err = 0;
VkResult ret;
AVVkFrame *f = (AVVkFrame *)src->data[0];
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
VulkanFramesPriv *fp = hwfc->internal->priv;
AVVulkanDeviceContext *hwctx = hwfc->device_ctx->hwctx;
AVVulkanFramesContext *hwfctx = hwfc->hwctx;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
VkImageDrmFormatModifierPropertiesEXT drm_mod = {
.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_PROPERTIES_EXT,
};
VkSemaphoreWaitInfo wait_info = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO,
.flags = 0x0,
.semaphoreCount = planes,
};
AVDRMFrameDescriptor *drm_desc = av_mallocz(sizeof(*drm_desc));
if (!drm_desc)
return AVERROR(ENOMEM);
err = prepare_frame(hwfc, &fp->compute_exec, f, PREP_MODE_EXTERNAL_EXPORT);
if (err < 0)
goto end;
/* Wait for the operation to finish so we can cleanly export it. */
wait_info.pSemaphores = f->sem;
wait_info.pValues = f->sem_value;
vk->WaitSemaphores(hwctx->act_dev, &wait_info, UINT64_MAX);
err = ff_hwframe_map_create(src->hw_frames_ctx, dst, src, &vulkan_unmap_to_drm, drm_desc);
if (err < 0)
goto end;
ret = vk->GetImageDrmFormatModifierPropertiesEXT(hwctx->act_dev, f->img[0],
&drm_mod);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Failed to retrieve DRM format modifier!\n");
err = AVERROR_EXTERNAL;
goto end;
}
for (int i = 0; (i < planes) && (f->mem[i]); i++) {
VkMemoryGetFdInfoKHR export_info = {
.sType = VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR,
.memory = f->mem[i],
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_DMA_BUF_BIT_EXT,
};
ret = vk->GetMemoryFdKHR(hwctx->act_dev, &export_info,
&drm_desc->objects[i].fd);
if (ret != VK_SUCCESS) {
av_log(hwfc, AV_LOG_ERROR, "Unable to export the image as a FD!\n");
err = AVERROR_EXTERNAL;
goto end;
}
drm_desc->nb_objects++;
drm_desc->objects[i].size = f->size[i];
drm_desc->objects[i].format_modifier = drm_mod.drmFormatModifier;
}
drm_desc->nb_layers = planes;
for (int i = 0; i < drm_desc->nb_layers; i++) {
VkSubresourceLayout layout;
VkImageSubresource sub = {
.aspectMask = VK_IMAGE_ASPECT_MEMORY_PLANE_0_BIT_EXT,
};
VkFormat plane_vkfmt = av_vkfmt_from_pixfmt(hwfc->sw_format)[i];
drm_desc->layers[i].format = vulkan_fmt_to_drm(plane_vkfmt);
drm_desc->layers[i].nb_planes = 1;
if (drm_desc->layers[i].format == DRM_FORMAT_INVALID) {
av_log(hwfc, AV_LOG_ERROR, "Cannot map to DRM layer, unsupported!\n");
err = AVERROR_PATCHWELCOME;
goto end;
}
drm_desc->layers[i].planes[0].object_index = FFMIN(i, drm_desc->nb_objects - 1);
if (f->tiling == VK_IMAGE_TILING_OPTIMAL)
continue;
vk->GetImageSubresourceLayout(hwctx->act_dev, f->img[i], &sub, &layout);
drm_desc->layers[i].planes[0].offset = layout.offset;
drm_desc->layers[i].planes[0].pitch = layout.rowPitch;
if (hwfctx->flags & AV_VK_FRAME_FLAG_CONTIGUOUS_MEMORY)
drm_desc->layers[i].planes[0].offset += f->offset[i];
}
dst->width = src->width;
dst->height = src->height;
dst->data[0] = (uint8_t *)drm_desc;
av_log(hwfc, AV_LOG_VERBOSE, "Mapped AVVkFrame to a DRM object!\n");
return 0;
end:
av_free(drm_desc);
return err;
}
#if CONFIG_VAAPI
static int vulkan_map_to_vaapi(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
int err;
AVFrame *tmp = av_frame_alloc();
if (!tmp)
return AVERROR(ENOMEM);
tmp->format = AV_PIX_FMT_DRM_PRIME;
err = vulkan_map_to_drm(hwfc, tmp, src, flags);
if (err < 0)
goto fail;
err = av_hwframe_map(dst, tmp, flags);
if (err < 0)
goto fail;
err = ff_hwframe_map_replace(dst, src);
fail:
av_frame_free(&tmp);
return err;
}
#endif
#endif
static int vulkan_map_from(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src, int flags)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (dst->format) {
#if CONFIG_LIBDRM
case AV_PIX_FMT_DRM_PRIME:
if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS)
return vulkan_map_to_drm(hwfc, dst, src, flags);
else
return AVERROR(ENOSYS);
#if CONFIG_VAAPI
case AV_PIX_FMT_VAAPI:
if (p->vkctx.extensions & FF_VK_EXT_DRM_MODIFIER_FLAGS)
return vulkan_map_to_vaapi(hwfc, dst, src, flags);
else
return AVERROR(ENOSYS);
#endif
#endif
default:
break;
}
return AVERROR(ENOSYS);
}
static size_t get_req_buffer_size(VulkanDevicePriv *p, int *stride, int height)
{
size_t size;
*stride = FFALIGN(*stride, p->props.properties.limits.optimalBufferCopyRowPitchAlignment);
size = height*(*stride);
size = FFALIGN(size, p->props.properties.limits.minMemoryMapAlignment);
return size;
}
static int transfer_image_buf(AVHWFramesContext *hwfc, AVFrame *f,
AVBufferRef **bufs, size_t *buf_offsets,
const int *buf_stride, int w,
int h, enum AVPixelFormat pix_fmt, int to_buf)
{
int err;
AVVkFrame *frame = (AVVkFrame *)f->data[0];
VulkanFramesPriv *fp = hwfc->internal->priv;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
VkImageMemoryBarrier2 img_bar[AV_NUM_DATA_POINTERS];
int nb_img_bar = 0;
const int nb_images = ff_vk_count_images(frame);
int pixfmt_planes = av_pix_fmt_count_planes(pix_fmt);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
VkCommandBuffer cmd_buf;
FFVkExecContext *exec = ff_vk_exec_get(to_buf ? &fp->download_exec :
&fp->upload_exec);
cmd_buf = exec->buf;
ff_vk_exec_start(&p->vkctx, exec);
err = ff_vk_exec_add_dep_buf(&p->vkctx, exec, bufs, pixfmt_planes, 1);
if (err < 0)
return err;
err = ff_vk_exec_add_dep_frame(&p->vkctx, exec, f,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_TRANSFER_BIT);
if (err < 0)
return err;
ff_vk_frame_barrier(&p->vkctx, exec, f, img_bar, &nb_img_bar,
VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_2_TRANSFER_BIT_KHR,
to_buf ? VK_ACCESS_TRANSFER_READ_BIT :
VK_ACCESS_TRANSFER_WRITE_BIT,
to_buf ? VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL :
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_QUEUE_FAMILY_IGNORED);
vk->CmdPipelineBarrier2(cmd_buf, &(VkDependencyInfo) {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pImageMemoryBarriers = img_bar,
.imageMemoryBarrierCount = nb_img_bar,
});
/* Schedule a copy for each plane */
for (int i = 0; i < pixfmt_planes; i++) {
int idx = FFMIN(i, nb_images - 1);
VkImageAspectFlags plane_aspect[] = { VK_IMAGE_ASPECT_COLOR_BIT,
VK_IMAGE_ASPECT_PLANE_0_BIT,
VK_IMAGE_ASPECT_PLANE_1_BIT,
VK_IMAGE_ASPECT_PLANE_2_BIT, };
FFVkBuffer *vkbuf = (FFVkBuffer *)bufs[i]->data;
VkBufferImageCopy buf_reg = {
.bufferOffset = buf_offsets[i],
.bufferRowLength = buf_stride[i] / desc->comp[i].step,
.imageSubresource.layerCount = 1,
.imageSubresource.aspectMask = plane_aspect[(pixfmt_planes != nb_images) +
i*(pixfmt_planes != nb_images)],
.imageOffset = { 0, 0, 0, },
};
uint32_t p_w, p_h;
get_plane_wh(&p_w, &p_h, pix_fmt, w, h, i);
buf_reg.bufferImageHeight = p_h;
buf_reg.imageExtent = (VkExtent3D){ p_w, p_h, 1, };
if (to_buf)
vk->CmdCopyImageToBuffer(cmd_buf, frame->img[idx],
img_bar[0].newLayout,
vkbuf->buf,
1, &buf_reg);
else
vk->CmdCopyBufferToImage(cmd_buf, vkbuf->buf, frame->img[idx],
img_bar[0].newLayout,
1, &buf_reg);
}
err = ff_vk_exec_submit(&p->vkctx, exec);
if (err < 0)
return err;
/* Wait for the operation to complete when downloading */
if (to_buf)
ff_vk_exec_wait(&p->vkctx, exec);
return 0;
}
static int vulkan_transfer_data(AVHWFramesContext *hwfc, const AVFrame *vkf,
const AVFrame *swf, int from)
{
int err = 0;
VkResult ret;
AVHWDeviceContext *dev_ctx = hwfc->device_ctx;
AVVulkanDeviceContext *hwctx = dev_ctx->hwctx;
VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
FFVulkanFunctions *vk = &p->vkctx.vkfn;
AVFrame tmp;
FFVkBuffer *vkbufs[AV_NUM_DATA_POINTERS];
AVBufferRef *bufs[AV_NUM_DATA_POINTERS] = { 0 };
size_t buf_offsets[AV_NUM_DATA_POINTERS] = { 0 };
uint32_t p_w, p_h;
const int planes = av_pix_fmt_count_planes(swf->format);
int host_mapped[AV_NUM_DATA_POINTERS] = { 0 };
const int map_host = !!(p->vkctx.extensions & FF_VK_EXT_EXTERNAL_HOST_MEMORY);
if ((swf->format != AV_PIX_FMT_NONE && !av_vkfmt_from_pixfmt(swf->format))) {
av_log(hwfc, AV_LOG_ERROR, "Unsupported software frame pixel format!\n");
return AVERROR(EINVAL);
}
if (swf->width > hwfc->width || swf->height > hwfc->height)
return AVERROR(EINVAL);
/* Create buffers */
for (int i = 0; i < planes; i++) {
size_t req_size;
VkExternalMemoryBufferCreateInfo create_desc = {
.sType = VK_STRUCTURE_TYPE_EXTERNAL_MEMORY_BUFFER_CREATE_INFO,
.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT,
};
VkImportMemoryHostPointerInfoEXT import_desc = {
.sType = VK_STRUCTURE_TYPE_IMPORT_MEMORY_HOST_POINTER_INFO_EXT,
.handleType = VK_EXTERNAL_MEMORY_HANDLE_TYPE_HOST_ALLOCATION_BIT_EXT,
};
VkMemoryHostPointerPropertiesEXT p_props = {
.sType = VK_STRUCTURE_TYPE_MEMORY_HOST_POINTER_PROPERTIES_EXT,
};
get_plane_wh(&p_w, &p_h, swf->format, swf->width, swf->height, i);
tmp.linesize[i] = FFABS(swf->linesize[i]);
/* Do not map images with a negative stride */
if (map_host && swf->linesize[i] > 0) {
size_t offs;
offs = (uintptr_t)swf->data[i] % p->hprops.minImportedHostPointerAlignment;
import_desc.pHostPointer = swf->data[i] - offs;
/* We have to compensate for the few extra bytes of padding we
* completely ignore at the start */
req_size = FFALIGN(offs + tmp.linesize[i] * p_h,
p->hprops.minImportedHostPointerAlignment);
ret = vk->GetMemoryHostPointerPropertiesEXT(hwctx->act_dev,
import_desc.handleType,
import_desc.pHostPointer,
&p_props);
if (ret == VK_SUCCESS && p_props.memoryTypeBits) {
host_mapped[i] = 1;
buf_offsets[i] = offs;
}
}
if (!host_mapped[i])
req_size = get_req_buffer_size(p, &tmp.linesize[i], p_h);
err = ff_vk_create_avbuf(&p->vkctx, &bufs[i], req_size,
host_mapped[i] ? &create_desc : NULL,
host_mapped[i] ? &import_desc : NULL,
from ? VK_BUFFER_USAGE_TRANSFER_DST_BIT :
VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
(host_mapped[i] ?
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT : 0x0));
if (err < 0)
goto end;
vkbufs[i] = (FFVkBuffer *)bufs[i]->data;
}
if (!from) {
/* Map, copy image TO buffer (which then goes to the VkImage), unmap */
if ((err = ff_vk_map_buffers(&p->vkctx, vkbufs, tmp.data, planes, 0)))
goto end;
for (int i = 0; i < planes; i++) {
if (host_mapped[i])
continue;
get_plane_wh(&p_w, &p_h, swf->format, swf->width, swf->height, i);
av_image_copy_plane(tmp.data[i], tmp.linesize[i],
(const uint8_t *)swf->data[i], swf->linesize[i],
FFMIN(tmp.linesize[i], FFABS(swf->linesize[i])),
p_h);
}
if ((err = ff_vk_unmap_buffers(&p->vkctx, vkbufs, planes, 1)))
goto end;
}
/* Copy buffers into/from image */
err = transfer_image_buf(hwfc, (AVFrame *)vkf, bufs, buf_offsets,
tmp.linesize, swf->width, swf->height, swf->format,
from);
if (from) {
/* Map, copy buffer (which came FROM the VkImage) to the frame, unmap */
if ((err = ff_vk_map_buffers(&p->vkctx, vkbufs, tmp.data, planes, 0)))
goto end;
for (int i = 0; i < planes; i++) {
if (host_mapped[i])
continue;
get_plane_wh(&p_w, &p_h, swf->format, swf->width, swf->height, i);
av_image_copy_plane_uc_from(swf->data[i], swf->linesize[i],
(const uint8_t *)tmp.data[i], tmp.linesize[i],
FFMIN(tmp.linesize[i], FFABS(swf->linesize[i])),
p_h);
}
if ((err = ff_vk_unmap_buffers(&p->vkctx, vkbufs, planes, 1)))
goto end;
}
end:
for (int i = 0; i < planes; i++)
av_buffer_unref(&bufs[i]);
return err;
}
static int vulkan_transfer_data_to(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (src->format) {
#if CONFIG_CUDA
case AV_PIX_FMT_CUDA:
#ifdef _WIN32
if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_MEMORY) &&
(p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_SEM))
#else
if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_MEMORY) &&
(p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_SEM))
#endif
return vulkan_transfer_data_from_cuda(hwfc, dst, src);
#endif
default:
if (src->hw_frames_ctx)
return AVERROR(ENOSYS);
else
return vulkan_transfer_data(hwfc, dst, src, 0);
}
}
#if CONFIG_CUDA
static int vulkan_transfer_data_to_cuda(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
int err;
CUcontext dummy;
AVVkFrame *dst_f;
AVVkFrameInternal *dst_int;
VulkanFramesPriv *fp = hwfc->internal->priv;
const int planes = av_pix_fmt_count_planes(hwfc->sw_format);
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(hwfc->sw_format);
AVHWFramesContext *cuda_fc = (AVHWFramesContext*)dst->hw_frames_ctx->data;
AVHWDeviceContext *cuda_cu = cuda_fc->device_ctx;
AVCUDADeviceContext *cuda_dev = cuda_cu->hwctx;
AVCUDADeviceContextInternal *cu_internal = cuda_dev->internal;
CudaFunctions *cu = cu_internal->cuda_dl;
CUDA_EXTERNAL_SEMAPHORE_WAIT_PARAMS s_w_par[AV_NUM_DATA_POINTERS] = { 0 };
CUDA_EXTERNAL_SEMAPHORE_SIGNAL_PARAMS s_s_par[AV_NUM_DATA_POINTERS] = { 0 };
dst_f = (AVVkFrame *)src->data[0];
err = prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_EXPORT);
if (err < 0)
return err;
err = CHECK_CU(cu->cuCtxPushCurrent(cuda_dev->cuda_ctx));
if (err < 0)
return err;
err = vulkan_export_to_cuda(hwfc, dst->hw_frames_ctx, src);
if (err < 0) {
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
return err;
}
dst_int = dst_f->internal;
for (int i = 0; i < planes; i++) {
s_w_par[i].params.fence.value = dst_f->sem_value[i] + 0;
s_s_par[i].params.fence.value = dst_f->sem_value[i] + 1;
}
err = CHECK_CU(cu->cuWaitExternalSemaphoresAsync(dst_int->cu_sem, s_w_par,
planes, cuda_dev->stream));
if (err < 0)
goto fail;
for (int i = 0; i < planes; i++) {
CUDA_MEMCPY2D cpy = {
.dstMemoryType = CU_MEMORYTYPE_DEVICE,
.dstDevice = (CUdeviceptr)dst->data[i],
.dstPitch = dst->linesize[i],
.dstY = 0,
.srcMemoryType = CU_MEMORYTYPE_ARRAY,
.srcArray = dst_int->cu_array[i],
};
int w, h;
get_plane_wh(&w, &h, hwfc->sw_format, hwfc->width, hwfc->height, i);
cpy.WidthInBytes = w * desc->comp[i].step;
cpy.Height = h;
err = CHECK_CU(cu->cuMemcpy2DAsync(&cpy, cuda_dev->stream));
if (err < 0)
goto fail;
}
err = CHECK_CU(cu->cuSignalExternalSemaphoresAsync(dst_int->cu_sem, s_s_par,
planes, cuda_dev->stream));
if (err < 0)
goto fail;
for (int i = 0; i < planes; i++)
dst_f->sem_value[i]++;
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
av_log(hwfc, AV_LOG_VERBOSE, "Transfered Vulkan image to CUDA!\n");
return prepare_frame(hwfc, &fp->upload_exec, dst_f, PREP_MODE_EXTERNAL_IMPORT);
fail:
CHECK_CU(cu->cuCtxPopCurrent(&dummy));
vulkan_free_internal(dst_f);
dst_f->internal = NULL;
av_buffer_unref(&dst->buf[0]);
return err;
}
#endif
static int vulkan_transfer_data_from(AVHWFramesContext *hwfc, AVFrame *dst,
const AVFrame *src)
{
av_unused VulkanDevicePriv *p = hwfc->device_ctx->internal->priv;
switch (dst->format) {
#if CONFIG_CUDA
case AV_PIX_FMT_CUDA:
#ifdef _WIN32
if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_MEMORY) &&
(p->vkctx.extensions & FF_VK_EXT_EXTERNAL_WIN32_SEM))
#else
if ((p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_MEMORY) &&
(p->vkctx.extensions & FF_VK_EXT_EXTERNAL_FD_SEM))
#endif
return vulkan_transfer_data_to_cuda(hwfc, dst, src);
#endif
default:
if (dst->hw_frames_ctx)
return AVERROR(ENOSYS);
else
return vulkan_transfer_data(hwfc, src, dst, 1);
}
}
static int vulkan_frames_derive_to(AVHWFramesContext *dst_fc,
AVHWFramesContext *src_fc, int flags)
{
return vulkan_frames_init(dst_fc);
}
AVVkFrame *av_vk_frame_alloc(void)
{
int err;
AVVkFrame *f = av_mallocz(sizeof(AVVkFrame));
if (!f)
return NULL;
f->internal = av_mallocz(sizeof(*f->internal));
if (!f->internal) {
av_free(f);
return NULL;
}
err = pthread_mutex_init(&f->internal->update_mutex, NULL);
if (err != 0) {
av_free(f->internal);
av_free(f);
return NULL;
}
return f;
}
const HWContextType ff_hwcontext_type_vulkan = {
.type = AV_HWDEVICE_TYPE_VULKAN,
.name = "Vulkan",
.device_hwctx_size = sizeof(AVVulkanDeviceContext),
.device_priv_size = sizeof(VulkanDevicePriv),
.frames_hwctx_size = sizeof(AVVulkanFramesContext),
.frames_priv_size = sizeof(VulkanFramesPriv),
.device_init = &vulkan_device_init,
.device_create = &vulkan_device_create,
.device_derive = &vulkan_device_derive,
.frames_get_constraints = &vulkan_frames_get_constraints,
.frames_init = vulkan_frames_init,
.frames_get_buffer = vulkan_get_buffer,
.frames_uninit = vulkan_frames_uninit,
.transfer_get_formats = vulkan_transfer_get_formats,
.transfer_data_to = vulkan_transfer_data_to,
.transfer_data_from = vulkan_transfer_data_from,
.map_to = vulkan_map_to,
.map_from = vulkan_map_from,
.frames_derive_to = &vulkan_frames_derive_to,
.pix_fmts = (const enum AVPixelFormat []) {
AV_PIX_FMT_VULKAN,
AV_PIX_FMT_NONE
},
};