|
|
|
/*
|
|
|
|
* Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef AVUTIL_SOFTFLOAT_H
|
|
|
|
#define AVUTIL_SOFTFLOAT_H
|
|
|
|
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "common.h"
|
|
|
|
|
|
|
|
#include "avassert.h"
|
|
|
|
#include "softfloat_tables.h"
|
|
|
|
|
|
|
|
#define MIN_EXP -126
|
|
|
|
#define MAX_EXP 126
|
|
|
|
#define ONE_BITS 29
|
|
|
|
|
|
|
|
typedef struct SoftFloat{
|
|
|
|
int32_t mant;
|
|
|
|
int32_t exp;
|
|
|
|
}SoftFloat;
|
|
|
|
|
|
|
|
static const SoftFloat FLOAT_0 = { 0, 0};
|
|
|
|
static const SoftFloat FLOAT_05 = { 0x20000000, 0};
|
|
|
|
static const SoftFloat FLOAT_1 = { 0x20000000, 1};
|
|
|
|
static const SoftFloat FLOAT_EPSILON = { 0x29F16B12, -16};
|
|
|
|
static const SoftFloat FLOAT_1584893192 = { 0x32B771ED, 1};
|
|
|
|
static const SoftFloat FLOAT_100000 = { 0x30D40000, 17};
|
|
|
|
static const SoftFloat FLOAT_0999999 = { 0x3FFFFBCE, 0};
|
|
|
|
|
|
|
|
static inline av_const double av_sf2double(SoftFloat v) {
|
|
|
|
v.exp -= ONE_BITS +1;
|
|
|
|
if(v.exp > 0) return (double)v.mant * (double)(1 << v.exp);
|
|
|
|
else return (double)v.mant / (double)(1 << (-v.exp));
|
|
|
|
}
|
|
|
|
|
|
|
|
static av_const SoftFloat av_normalize_sf(SoftFloat a){
|
|
|
|
if(a.mant){
|
|
|
|
#if 1
|
|
|
|
while((a.mant + 0x1FFFFFFFU)<0x3FFFFFFFU){
|
|
|
|
a.mant += a.mant;
|
|
|
|
a.exp -= 1;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
int s=ONE_BITS - av_log2(FFABS(a.mant));
|
|
|
|
a.exp -= s;
|
|
|
|
a.mant <<= s;
|
|
|
|
#endif
|
|
|
|
if(a.exp < MIN_EXP){
|
|
|
|
a.exp = MIN_EXP;
|
|
|
|
a.mant= 0;
|
|
|
|
}
|
|
|
|
}else{
|
|
|
|
a.exp= MIN_EXP;
|
|
|
|
}
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline av_const SoftFloat av_normalize1_sf(SoftFloat a){
|
|
|
|
#if 1
|
|
|
|
if((int32_t)(a.mant + 0x40000000U) <= 0){
|
|
|
|
a.exp++;
|
|
|
|
a.mant>>=1;
|
|
|
|
}
|
|
|
|
av_assert2(a.mant < 0x40000000 && a.mant > -0x40000000);
|
|
|
|
return a;
|
|
|
|
#elif 1
|
|
|
|
int t= a.mant + 0x40000000 < 0;
|
|
|
|
return (SoftFloat){ a.mant>>t, a.exp+t};
|
|
|
|
#else
|
|
|
|
int t= (a.mant + 0x3FFFFFFFU)>>31;
|
|
|
|
return (SoftFloat){a.mant>>t, a.exp+t};
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @return Will not be more denormalized than a+b. So if either input is
|
|
|
|
* normalized, then the output will not be worse then the other input.
|
|
|
|
* If both are normalized, then the output will be normalized.
|
|
|
|
*/
|
|
|
|
static inline av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b){
|
|
|
|
a.exp += b.exp;
|
|
|
|
av_assert2((int32_t)((a.mant * (int64_t)b.mant) >> ONE_BITS) == (a.mant * (int64_t)b.mant) >> ONE_BITS);
|
|
|
|
a.mant = (a.mant * (int64_t)b.mant) >> ONE_BITS;
|
|
|
|
return av_normalize1_sf((SoftFloat){a.mant, a.exp - 1});
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* b has to be normalized and not zero.
|
|
|
|
* @return Will not be more denormalized than a.
|
|
|
|
*/
|
|
|
|
static inline av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b){
|
|
|
|
a.exp -= b.exp;
|
|
|
|
a.mant = ((int64_t)a.mant<<(ONE_BITS+1)) / b.mant;
|
|
|
|
return av_normalize1_sf(a);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline av_const int av_cmp_sf(SoftFloat a, SoftFloat b){
|
|
|
|
int t= a.exp - b.exp;
|
|
|
|
if(t<0) return (a.mant >> (-t)) - b.mant ;
|
|
|
|
else return a.mant - (b.mant >> t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline av_const int av_gt_sf(SoftFloat a, SoftFloat b)
|
|
|
|
{
|
|
|
|
int t= a.exp - b.exp;
|
|
|
|
if(t<0) return (a.mant >> (-t)) > b.mant ;
|
|
|
|
else return a.mant > (b.mant >> t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b){
|
|
|
|
int t= a.exp - b.exp;
|
|
|
|
if (t <-31) return b;
|
|
|
|
else if (t < 0) return av_normalize_sf(av_normalize1_sf((SoftFloat){ b.mant + (a.mant >> (-t)), b.exp}));
|
|
|
|
else if (t < 32) return av_normalize_sf(av_normalize1_sf((SoftFloat){ a.mant + (b.mant >> t ), a.exp}));
|
|
|
|
else return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b){
|
|
|
|
return av_add_sf(a, (SoftFloat){ -b.mant, b.exp});
|
|
|
|
}
|
|
|
|
|
|
|
|
//FIXME log, exp, pow
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Converts a mantisse and exponent to a SoftFloat
|
|
|
|
* @returns a SoftFloat with value v * 2^frac_bits
|
|
|
|
*/
|
|
|
|
static inline av_const SoftFloat av_int2sf(int v, int frac_bits){
|
|
|
|
return av_normalize_sf((SoftFloat){v, ONE_BITS + 1 - frac_bits});
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rounding is to -inf.
|
|
|
|
*/
|
|
|
|
static inline av_const int av_sf2int(SoftFloat v, int frac_bits){
|
|
|
|
v.exp += frac_bits - (ONE_BITS + 1);
|
|
|
|
if(v.exp >= 0) return v.mant << v.exp ;
|
|
|
|
else return v.mant >>(-v.exp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rounding-to-nearest used.
|
|
|
|
*/
|
|
|
|
static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val)
|
|
|
|
{
|
|
|
|
int tabIndex, rem;
|
|
|
|
|
|
|
|
if (val.mant == 0)
|
|
|
|
val.exp = 0;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
tabIndex = (val.mant - 0x20000000) >> 20;
|
|
|
|
|
|
|
|
rem = val.mant & 0xFFFFF;
|
|
|
|
val.mant = (int)(((int64_t)av_sqrttbl_sf[tabIndex] * (0x100000 - rem) +
|
|
|
|
(int64_t)av_sqrttbl_sf[tabIndex + 1] * rem +
|
|
|
|
0x80000) >> 20);
|
|
|
|
val.mant = (int)(((int64_t)av_sqr_exp_multbl_sf[val.exp & 1] * val.mant +
|
|
|
|
0x10000000) >> 29);
|
|
|
|
|
|
|
|
if (val.mant < 0x40000000)
|
|
|
|
val.exp -= 2;
|
|
|
|
else
|
|
|
|
val.mant >>= 1;
|
|
|
|
|
|
|
|
val.exp = (val.exp >> 1) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return val;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rounding-to-nearest used.
|
|
|
|
*/
|
|
|
|
static av_unused void av_sincos_sf(int a, int *s, int *c)
|
|
|
|
{
|
|
|
|
int idx, sign;
|
|
|
|
int sv, cv;
|
|
|
|
int st, ct;
|
|
|
|
|
|
|
|
idx = a >> 26;
|
|
|
|
sign = (idx << 27) >> 31;
|
|
|
|
cv = av_costbl_1_sf[idx & 0xf];
|
|
|
|
cv = (cv ^ sign) - sign;
|
|
|
|
|
|
|
|
idx -= 8;
|
|
|
|
sign = (idx << 27) >> 31;
|
|
|
|
sv = av_costbl_1_sf[idx & 0xf];
|
|
|
|
sv = (sv ^ sign) - sign;
|
|
|
|
|
|
|
|
idx = a >> 21;
|
|
|
|
ct = av_costbl_2_sf[idx & 0x1f];
|
|
|
|
st = av_sintbl_2_sf[idx & 0x1f];
|
|
|
|
|
|
|
|
idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
|
|
|
|
|
|
|
|
sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
|
|
|
|
|
|
|
|
cv = idx;
|
|
|
|
|
|
|
|
idx = a >> 16;
|
|
|
|
ct = av_costbl_3_sf[idx & 0x1f];
|
|
|
|
st = av_sintbl_3_sf[idx & 0x1f];
|
|
|
|
|
|
|
|
idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30);
|
|
|
|
|
|
|
|
sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
|
|
|
|
cv = idx;
|
|
|
|
|
|
|
|
idx = a >> 11;
|
|
|
|
|
|
|
|
ct = (int)(((int64_t)av_costbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
|
|
|
|
(int64_t)av_costbl_4_sf[(idx & 0x1f)+1]*(a & 0x7ff) +
|
|
|
|
0x400) >> 11);
|
|
|
|
st = (int)(((int64_t)av_sintbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) +
|
|
|
|
(int64_t)av_sintbl_4_sf[(idx & 0x1f) + 1] * (a & 0x7ff) +
|
|
|
|
0x400) >> 11);
|
|
|
|
|
|
|
|
*c = (int)(((int64_t)cv * ct + (int64_t)sv * st + 0x20000000) >> 30);
|
|
|
|
|
|
|
|
*s = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* AVUTIL_SOFTFLOAT_H */
|