|
|
|
@chapter Muxers
|
|
|
|
@c man begin MUXERS
|
|
|
|
|
|
|
|
Muxers are configured elements in FFmpeg which allow writing
|
|
|
|
multimedia streams to a particular type of file.
|
|
|
|
|
|
|
|
When you configure your FFmpeg build, all the supported muxers
|
|
|
|
are enabled by default. You can list all available muxers using the
|
|
|
|
configure option @code{--list-muxers}.
|
|
|
|
|
|
|
|
You can disable all the muxers with the configure option
|
|
|
|
@code{--disable-muxers} and selectively enable / disable single muxers
|
|
|
|
with the options @code{--enable-muxer=@var{MUXER}} /
|
|
|
|
@code{--disable-muxer=@var{MUXER}}.
|
|
|
|
|
|
|
|
The option @code{-formats} of the ff* tools will display the list of
|
|
|
|
enabled muxers.
|
|
|
|
|
|
|
|
A description of some of the currently available muxers follows.
|
|
|
|
|
|
|
|
@anchor{crc}
|
|
|
|
@section crc
|
|
|
|
|
|
|
|
CRC (Cyclic Redundancy Check) testing format.
|
|
|
|
|
|
|
|
This muxer computes and prints the Adler-32 CRC of all the input audio
|
|
|
|
and video frames. By default audio frames are converted to signed
|
|
|
|
16-bit raw audio and video frames to raw video before computing the
|
|
|
|
CRC.
|
|
|
|
|
|
|
|
The output of the muxer consists of a single line of the form:
|
|
|
|
CRC=0x@var{CRC}, where @var{CRC} is a hexadecimal number 0-padded to
|
|
|
|
8 digits containing the CRC for all the decoded input frames.
|
|
|
|
|
|
|
|
For example to compute the CRC of the input, and store it in the file
|
|
|
|
@file{out.crc}:
|
|
|
|
@example
|
|
|
|
ffmpeg -i INPUT -f crc out.crc
|
|
|
|
@end example
|
|
|
|
|
|
|
|
You can print the CRC to stdout with the command:
|
|
|
|
@example
|
|
|
|
ffmpeg -i INPUT -f crc -
|
|
|
|
@end example
|
|
|
|
|
|
|
|
You can select the output format of each frame with @file{ffmpeg} by
|
|
|
|
specifying the audio and video codec and format. For example to
|
|
|
|
compute the CRC of the input audio converted to PCM unsigned 8-bit
|
|
|
|
and the input video converted to MPEG-2 video, use the command:
|
|
|
|
@example
|
|
|
|
ffmpeg -i INPUT -acodec pcm_u8 -vcodec mpeg2video -f crc -
|
|
|
|
@end example
|
|
|
|
|
|
|
|
See also the @ref{framecrc} muxer.
|
|
|
|
|
|
|
|
@anchor{framecrc}
|
|
|
|
@section framecrc
|
|
|
|
|
|
|
|
Per-frame CRC (Cyclic Redundancy Check) testing format.
|
|
|
|
|
|
|
|
This muxer computes and prints the Adler-32 CRC for each decoded audio
|
|
|
|
and video frame. By default audio frames are converted to signed
|
|
|
|
16-bit raw audio and video frames to raw video before computing the
|
|
|
|
CRC.
|
|
|
|
|
|
|
|
The output of the muxer consists of a line for each audio and video
|
|
|
|
frame of the form: @var{stream_index}, @var{frame_dts},
|
|
|
|
@var{frame_size}, 0x@var{CRC}, where @var{CRC} is a hexadecimal
|
|
|
|
number 0-padded to 8 digits containing the CRC of the decoded frame.
|
|
|
|
|
|
|
|
For example to compute the CRC of each decoded frame in the input, and
|
|
|
|
store it in the file @file{out.crc}:
|
|
|
|
@example
|
|
|
|
ffmpeg -i INPUT -f framecrc out.crc
|
|
|
|
@end example
|
|
|
|
|
|
|
|
You can print the CRC of each decoded frame to stdout with the command:
|
|
|
|
@example
|
|
|
|
ffmpeg -i INPUT -f framecrc -
|
|
|
|
@end example
|
|
|
|
|
|
|
|
You can select the output format of each frame with @file{ffmpeg} by
|
|
|
|
specifying the audio and video codec and format. For example, to
|
|
|
|
compute the CRC of each decoded input audio frame converted to PCM
|
|
|
|
unsigned 8-bit and of each decoded input video frame converted to
|
|
|
|
MPEG-2 video, use the command:
|
|
|
|
@example
|
|
|
|
ffmpeg -i INPUT -acodec pcm_u8 -vcodec mpeg2video -f framecrc -
|
|
|
|
@end example
|
|
|
|
|
|
|
|
See also the @ref{crc} muxer.
|
|
|
|
|
|
|
|
@section image2
|
|
|
|
|
|
|
|
Image file muxer.
|
|
|
|
|
|
|
|
The image file muxer writes video frames to image files.
|
|
|
|
|
|
|
|
The output filenames are specified by a pattern, which can be used to
|
|
|
|
produce sequentially numbered series of files.
|
|
|
|
The pattern may contain the string "%d" or "%0@var{N}d", this string
|
|
|
|
specifies the position of the characters representing a numbering in
|
|
|
|
the filenames. If the form "%0@var{N}d" is used, the string
|
|
|
|
representing the number in each filename is 0-padded to @var{N}
|
|
|
|
digits. The literal character '%' can be specified in the pattern with
|
|
|
|
the string "%%".
|
|
|
|
|
|
|
|
If the pattern contains "%d" or "%0@var{N}d", the first filename of
|
|
|
|
the file list specified will contain the number 1, all the following
|
|
|
|
numbers will be sequential.
|
|
|
|
|
|
|
|
The pattern may contain a suffix which is used to automatically
|
|
|
|
determine the format of the image files to write.
|
|
|
|
|
|
|
|
For example the pattern "img-%03d.bmp" will specify a sequence of
|
|
|
|
filenames of the form @file{img-001.bmp}, @file{img-002.bmp}, ...,
|
|
|
|
@file{img-010.bmp}, etc.
|
|
|
|
The pattern "img%%-%d.jpg" will specify a sequence of filenames of the
|
|
|
|
form @file{img%-1.jpg}, @file{img%-2.jpg}, ..., @file{img%-10.jpg},
|
|
|
|
etc.
|
|
|
|
|
|
|
|
The following example shows how to use @file{ffmpeg} for creating a
|
|
|
|
sequence of files @file{img-001.jpeg}, @file{img-002.jpeg}, ...,
|
|
|
|
taking one image every second from the input video:
|
|
|
|
@example
|
|
|
|
ffmpeg -i in.avi -r 1 -f image2 'img-%03d.jpeg'
|
|
|
|
@end example
|
|
|
|
|
|
|
|
Note that with @file{ffmpeg}, if the format is not specified with the
|
|
|
|
@code{-f} option and the output filename specifies an image file
|
|
|
|
format, the image2 muxer is automatically selected, so the previous
|
|
|
|
command can be written as:
|
|
|
|
@example
|
|
|
|
ffmpeg -i in.avi -r 1 'img-%03d.jpeg'
|
|
|
|
@end example
|
|
|
|
|
|
|
|
Note also that the pattern must not necessarily contain "%d" or
|
|
|
|
"%0@var{N}d", for example to create a single image file
|
|
|
|
@file{img.jpeg} from the input video you can employ the command:
|
|
|
|
@example
|
|
|
|
ffmpeg -i in.avi -f image2 -vframes 1 img.jpeg
|
|
|
|
@end example
|
|
|
|
|
|
|
|
The image muxer supports the .Y.U.V image file format. This format is
|
|
|
|
special in that that each image frame consists of three files, for
|
|
|
|
each of the YUV420P components. To read or write this image file format,
|
|
|
|
specify the name of the '.Y' file. The muxer will automatically open the
|
|
|
|
'.U' and '.V' files as required.
|
|
|
|
|
|
|
|
@section mpegts
|
|
|
|
|
|
|
|
MPEG transport stream muxer.
|
|
|
|
|
|
|
|
This muxer implements ISO 13818-1 and part of ETSI EN 300 468.
|
|
|
|
|
|
|
|
The muxer options are:
|
|
|
|
|
|
|
|
@table @option
|
|
|
|
@item -mpegts_original_network_id @var{number}
|
|
|
|
Set the original_network_id (default 0x0001). This is unique identifier
|
|
|
|
of a network in DVB. Its main use is in the unique identification of a
|
|
|
|
service through the path Original_Network_ID, Transport_Stream_ID.
|
|
|
|
@item -mpegts_transport_stream_id @var{number}
|
|
|
|
Set the transport_stream_id (default 0x0001). This identifies a
|
|
|
|
transponder in DVB.
|
|
|
|
@item -mpegts_service_id @var{number}
|
|
|
|
Set the service_id (default 0x0001) also known as program in DVB.
|
|
|
|
@item -mpegts_pmt_start_pid @var{number}
|
|
|
|
Set the first PID for PMT (default 0x1000, max 0x1f00).
|
|
|
|
@item -mpegts_start_pid @var{number}
|
|
|
|
Set the first PID for data packets (default 0x0100, max 0x0f00).
|
|
|
|
@end table
|
|
|
|
|
|
|
|
The recognized metadata settings in mpegts muxer are @code{service_provider}
|
|
|
|
and @code{service_name}. If they are not set the default for
|
|
|
|
@code{service_provider} is "FFmpeg" and the default for
|
|
|
|
@code{service_name} is "Service01".
|
|
|
|
|
|
|
|
@example
|
|
|
|
ffmpeg -i file.mpg -acodec copy -vcodec copy \
|
|
|
|
-mpegts_original_network_id 0x1122 \
|
|
|
|
-mpegts_transport_stream_id 0x3344 \
|
|
|
|
-mpegts_service_id 0x5566 \
|
|
|
|
-mpegts_pmt_start_pid 0x1500 \
|
|
|
|
-mpegts_start_pid 0x150 \
|
|
|
|
-metadata service_provider="Some provider" \
|
|
|
|
-metadata service_name="Some Channel" \
|
|
|
|
-y out.ts
|
|
|
|
@end example
|
|
|
|
|
|
|
|
@section null
|
|
|
|
|
|
|
|
Null muxer.
|
|
|
|
|
|
|
|
This muxer does not generate any output file, it is mainly useful for
|
|
|
|
testing or benchmarking purposes.
|
|
|
|
|
|
|
|
For example to benchmark decoding with @file{ffmpeg} you can use the
|
|
|
|
command:
|
|
|
|
@example
|
|
|
|
ffmpeg -benchmark -i INPUT -f null out.null
|
|
|
|
@end example
|
|
|
|
|
|
|
|
Note that the above command does not read or write the @file{out.null}
|
|
|
|
file, but specifying the output file is required by the @file{ffmpeg}
|
|
|
|
syntax.
|
|
|
|
|
|
|
|
Alternatively you can write the command as:
|
|
|
|
@example
|
|
|
|
ffmpeg -benchmark -i INPUT -f null -
|
|
|
|
@end example
|
|
|
|
|
|
|
|
@section matroska
|
|
|
|
|
|
|
|
Matroska container muxer.
|
|
|
|
|
|
|
|
This muxer implements the matroska and webm container specs.
|
|
|
|
|
|
|
|
The recognized metadata settings in this muxer are:
|
|
|
|
|
|
|
|
@table @option
|
|
|
|
|
|
|
|
@item title=@var{title name}
|
|
|
|
Name provided to a single track
|
|
|
|
@end table
|
|
|
|
|
|
|
|
@table @option
|
|
|
|
|
|
|
|
@item language=@var{language name}
|
|
|
|
Specifies the language of the track in the Matroska languages form
|
|
|
|
@end table
|
|
|
|
|
|
|
|
@table @option
|
|
|
|
|
|
|
|
@item stereo_mode=@var{mode}
|
|
|
|
Stereo 3D video layout of two views in a single video track
|
|
|
|
@table @option
|
|
|
|
@item mono
|
|
|
|
video is not stereo
|
|
|
|
@item left_right
|
|
|
|
Both views are arranged side by side, Left-eye view is on the left
|
|
|
|
@item bottom_top
|
|
|
|
Both views are arranged in top-bottom orientation, Left-eye view is at bottom
|
|
|
|
@item top_bottom
|
|
|
|
Both views are arranged in top-bottom orientation, Left-eye view is on top
|
|
|
|
@item checkerboard_rl
|
|
|
|
Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first
|
|
|
|
@item checkerboard_lr
|
|
|
|
Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first
|
|
|
|
@item row_interleaved_rl
|
|
|
|
Each view is constituted by a row based interleaving, Right-eye view is first row
|
|
|
|
@item row_interleaved_lr
|
|
|
|
Each view is constituted by a row based interleaving, Left-eye view is first row
|
|
|
|
@item col_interleaved_rl
|
|
|
|
Both views are arranged in a column based interleaving manner, Right-eye view is first column
|
|
|
|
@item col_interleaved_lr
|
|
|
|
Both views are arranged in a column based interleaving manner, Left-eye view is first column
|
|
|
|
@item anaglyph_cyan_red
|
|
|
|
All frames are in anaglyph format viewable through red-cyan filters
|
|
|
|
@item right_left
|
|
|
|
Both views are arranged side by side, Right-eye view is on the left
|
|
|
|
@item anaglyph_green_magenta
|
|
|
|
All frames are in anaglyph format viewable through green-magenta filters
|
|
|
|
@item block_lr
|
|
|
|
Both eyes laced in one Block, Left-eye view is first
|
|
|
|
@item block_rl
|
|
|
|
Both eyes laced in one Block, Right-eye view is first
|
|
|
|
@end table
|
|
|
|
@end table
|
|
|
|
|
|
|
|
For example a 3D WebM clip can be created using the following command line:
|
|
|
|
@example
|
|
|
|
ffmpeg -i sample_left_right_clip.mpg -an -vcodec libvpx -metadata stereo_mode=left_right -y stereo_clip.webm
|
|
|
|
@end example
|
|
|
|
|
|
|
|
@c man end MUXERS
|