|
|
|
/*
|
|
|
|
* This file is part of Libav.
|
|
|
|
*
|
|
|
|
* Libav is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* Libav is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with Libav; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
*@brief IntraX8 frame subdecoder image manipulation routines
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "dsputil.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
area positions, #3 is 1 pixel only, other are 8 pixels
|
|
|
|
|66666666|
|
|
|
|
3|44444444|55555555|
|
|
|
|
- -+--------+--------+
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
1 2|XXXXXXXX|
|
|
|
|
^-start
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define area1 (0)
|
|
|
|
#define area2 (8)
|
|
|
|
#define area3 (8+8)
|
|
|
|
#define area4 (8+8+1)
|
|
|
|
#define area5 (8+8+1+8)
|
|
|
|
#define area6 (8+8+1+16)
|
|
|
|
|
|
|
|
/**
|
|
|
|
Collect statistics and prepare the edge pixels required by the other spatial compensation functions.
|
|
|
|
|
|
|
|
* @param src pointer to the beginning of the processed block
|
|
|
|
* @param dst pointer to emu_edge, edge pixels are stored the way other compensation routines do.
|
|
|
|
* @param linesize byte offset between 2 vertical pixels in the source image
|
|
|
|
* @param range pointer to the variable where the edge pixel range is to be stored (max-min values)
|
|
|
|
* @param psum pointer to the variable where the edge pixel sum is to be stored
|
|
|
|
* @param edges Informs this routine that the block is on an image border, so it has to interpolate the missing edge pixels.
|
|
|
|
and some of the edge pixels should be interpolated, the flag has the following meaning:
|
|
|
|
1 - mb_x==0 - first block in the row, interpolate area #1,#2,#3;
|
|
|
|
2 - mb_y==0 - first row, interpolate area #3,#4,#5,#6;
|
|
|
|
note: 1|2 - mb_x==mb_y==0 - first block, use 0x80 value for all areas;
|
|
|
|
4 - mb_x>= (mb_width-1) last block in the row, interpolate area #5;
|
|
|
|
*/
|
|
|
|
static void x8_setup_spatial_compensation(uint8_t *src, uint8_t *dst, int linesize,
|
|
|
|
int * range, int * psum, int edges){
|
|
|
|
uint8_t * ptr;
|
|
|
|
int sum;
|
|
|
|
int i;
|
|
|
|
int min_pix,max_pix;
|
|
|
|
uint8_t c;
|
|
|
|
|
|
|
|
if((edges&3)==3){
|
|
|
|
*psum=0x80*(8+1+8+2);
|
|
|
|
*range=0;
|
|
|
|
memset(dst,0x80,16+1+16+8);
|
|
|
|
//this triggers flat_dc for sure.
|
|
|
|
//flat_dc avoids all (other) prediction modes, but requires dc_level decoding.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
min_pix=256;
|
|
|
|
max_pix=-1;
|
|
|
|
|
|
|
|
sum=0;
|
|
|
|
|
|
|
|
if(!(edges&1)){//(mb_x!=0)//there is previous block on this row
|
|
|
|
ptr=src-1;//left column, area 2
|
|
|
|
for(i=7;i>=0;i--){
|
|
|
|
c=*(ptr-1);//area1, same mb as area2, no need to check
|
|
|
|
dst[area1+i]=c;
|
|
|
|
c=*(ptr);
|
|
|
|
|
|
|
|
sum+=c;
|
|
|
|
min_pix=FFMIN(min_pix,c);
|
|
|
|
max_pix=FFMAX(max_pix,c);
|
|
|
|
dst[area2+i]=c;
|
|
|
|
|
|
|
|
ptr+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(!(edges&2)){ //(mb_y!=0)//there is row above
|
|
|
|
ptr=src-linesize;//top line
|
|
|
|
for(i=0;i<8;i++){
|
|
|
|
c=*(ptr+i);
|
|
|
|
sum+=c;
|
|
|
|
min_pix=FFMIN(min_pix, c);
|
|
|
|
max_pix=FFMAX(max_pix, c);
|
|
|
|
}
|
|
|
|
if(edges&4){//last block on the row?
|
|
|
|
memset(dst+area5,c,8);//set with last pixel fr
|
|
|
|
memcpy(dst+area4, ptr, 8);
|
|
|
|
}else{
|
|
|
|
memcpy(dst+area4, ptr, 16);//both area4 and 5
|
|
|
|
}
|
|
|
|
memcpy(dst+area6, ptr-linesize, 8);//area6 always present in the above block
|
|
|
|
}
|
|
|
|
//now calculate the stuff we need
|
|
|
|
if(edges&3){//mb_x==0 || mb_y==0){
|
|
|
|
int avg=(sum+4)>>3;
|
|
|
|
if(edges&1){ //(mb_x==0) {//implies mb_y!=0
|
|
|
|
memset(dst+area1,avg,8+8+1);//areas 1,2 and 3 are averaged
|
|
|
|
}else{//implies y==0 x!=0
|
|
|
|
memset(dst+area3,avg, 1+16+8);//areas 3, 4,5,6
|
|
|
|
}
|
|
|
|
sum+=avg*9;
|
|
|
|
}else{
|
|
|
|
uint8_t c=*(src-1-linesize);//the edge pixel, in the top line and left column
|
|
|
|
dst[area3]=c;
|
|
|
|
sum+=c;
|
|
|
|
//edge pixel is not part of min/max
|
|
|
|
}
|
|
|
|
(*range) = max_pix - min_pix;
|
|
|
|
sum += *(dst+area5) + *(dst+area5+1);
|
|
|
|
*psum = sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const uint16_t zero_prediction_weights[64*2] = {
|
|
|
|
640, 640, 669, 480, 708, 354, 748, 257, 792, 198, 760, 143, 808, 101, 772, 72,
|
|
|
|
480, 669, 537, 537, 598, 416, 661, 316, 719, 250, 707, 185, 768, 134, 745, 97,
|
|
|
|
354, 708, 416, 598, 488, 488, 564, 388, 634, 317, 642, 241, 716, 179, 706, 132,
|
|
|
|
257, 748, 316, 661, 388, 564, 469, 469, 543, 395, 571, 311, 655, 238, 660, 180,
|
|
|
|
198, 792, 250, 719, 317, 634, 395, 543, 469, 469, 507, 380, 597, 299, 616, 231,
|
|
|
|
161, 855, 206, 788, 266, 710, 340, 623, 411, 548, 455, 455, 548, 366, 576, 288,
|
|
|
|
122, 972, 159, 914, 211, 842, 276, 758, 341, 682, 389, 584, 483, 483, 520, 390,
|
|
|
|
110, 1172, 144, 1107, 193, 1028, 254, 932, 317, 846, 366, 731, 458, 611, 499, 499
|
|
|
|
};
|
|
|
|
|
|
|
|
static void spatial_compensation_0(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int i,j;
|
|
|
|
int x,y;
|
|
|
|
unsigned int p;//power divided by 2
|
|
|
|
int a;
|
|
|
|
uint16_t left_sum[2][8] = { { 0 } };
|
|
|
|
uint16_t top_sum[2][8] = { { 0 } };
|
|
|
|
|
|
|
|
for(i=0;i<8;i++){
|
|
|
|
a=src[area2+7-i]<<4;
|
|
|
|
for(j=0;j<8;j++){
|
|
|
|
p=abs(i-j);
|
|
|
|
left_sum[p&1][j]+= a>>(p>>1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(i=0;i<8;i++){
|
|
|
|
a=src[area4+i]<<4;
|
|
|
|
for(j=0;j<8;j++){
|
|
|
|
p=abs(i-j);
|
|
|
|
top_sum[p&1][j]+= a>>(p>>1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(;i<10;i++){
|
|
|
|
a=src[area4+i]<<4;
|
|
|
|
for(j=5;j<8;j++){
|
|
|
|
p=abs(i-j);
|
|
|
|
top_sum[p&1][j]+= a>>(p>>1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(;i<12;i++){
|
|
|
|
a=src[area4+i]<<4;
|
|
|
|
for(j=7;j<8;j++){
|
|
|
|
p=abs(i-j);
|
|
|
|
top_sum[p&1][j]+= a>>(p>>1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(i=0;i<8;i++){
|
|
|
|
top_sum [0][i]+=(top_sum [1][i]*181 + 128 )>>8;//181 is sqrt(2)/2
|
|
|
|
left_sum[0][i]+=(left_sum[1][i]*181 + 128 )>>8;
|
|
|
|
}
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x] = (
|
|
|
|
(uint32_t)top_sum [0][x]*zero_prediction_weights[y*16+x*2+0] +
|
|
|
|
(uint32_t)left_sum[0][y]*zero_prediction_weights[y*16+x*2+1] +
|
|
|
|
0x8000
|
|
|
|
)>>16;
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_1(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=src[area4 + FFMIN(2*y+x+2, 15) ];
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_2(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=src[area4 +1+y+x];
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_3(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=src[area4 +((y+1)>>1)+x];
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_4(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=( src[area4+x] + src[area6+x] + 1 )>>1;
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_5(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
if(2*x-y<0){
|
|
|
|
dst[x]=src[area2+9+2*x-y];
|
|
|
|
}else{
|
|
|
|
dst[x]=src[area4 +x-((y+1)>>1)];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_6(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=src[area3+x-y];
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_7(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
if(x-2*y>0){
|
|
|
|
dst[x]=( src[area3-1+x-2*y] + src[area3+x-2*y] + 1)>>1;
|
|
|
|
}else{
|
|
|
|
dst[x]=src[area2+8-y +(x>>1)];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_8(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=( src[area1+7-y] + src[area2+7-y] + 1 )>>1;
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_9(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=src[area2+6-FFMIN(x+y,6)];
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_10(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=(src[area2+7-y]*(8-x)+src[area4+x]*x+4)>>3;
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void spatial_compensation_11(uint8_t *src , uint8_t *dst, int linesize){
|
|
|
|
int x,y;
|
|
|
|
|
|
|
|
for(y=0;y<8;y++){
|
|
|
|
for(x=0;x<8;x++){
|
|
|
|
dst[x]=(src[area2+7-y]*y+src[area4+x]*(8-y)+4)>>3;
|
|
|
|
}
|
|
|
|
dst+=linesize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void x8_loop_filter(uint8_t * ptr, const int a_stride, const int b_stride, int quant){
|
|
|
|
int i,t;
|
|
|
|
int p0,p1,p2,p3,p4,p5,p6,p7,p8,p9;
|
|
|
|
int ql=(quant+10)>>3;
|
|
|
|
|
|
|
|
for(i=0; i<8; i++,ptr+=b_stride){
|
|
|
|
p0=ptr[-5*a_stride];
|
|
|
|
p1=ptr[-4*a_stride];
|
|
|
|
p2=ptr[-3*a_stride];
|
|
|
|
p3=ptr[-2*a_stride];
|
|
|
|
p4=ptr[-1*a_stride];
|
|
|
|
p5=ptr[ 0 ];
|
|
|
|
p6=ptr[ 1*a_stride];
|
|
|
|
p7=ptr[ 2*a_stride];
|
|
|
|
p8=ptr[ 3*a_stride];
|
|
|
|
p9=ptr[ 4*a_stride];
|
|
|
|
|
|
|
|
t=
|
|
|
|
(FFABS(p1-p2) <= ql) +
|
|
|
|
(FFABS(p2-p3) <= ql) +
|
|
|
|
(FFABS(p3-p4) <= ql) +
|
|
|
|
(FFABS(p4-p5) <= ql);
|
|
|
|
if(t>0){//You need at least 1 to be able to reach a total score of 6.
|
|
|
|
t+=
|
|
|
|
(FFABS(p5-p6) <= ql) +
|
|
|
|
(FFABS(p6-p7) <= ql) +
|
|
|
|
(FFABS(p7-p8) <= ql) +
|
|
|
|
(FFABS(p8-p9) <= ql) +
|
|
|
|
(FFABS(p0-p1) <= ql);
|
|
|
|
if(t>=6){
|
|
|
|
int min,max;
|
|
|
|
|
|
|
|
min=max=p1;
|
|
|
|
min=FFMIN(min,p3); max=FFMAX(max,p3);
|
|
|
|
min=FFMIN(min,p5); max=FFMAX(max,p5);
|
|
|
|
min=FFMIN(min,p8); max=FFMAX(max,p8);
|
|
|
|
if(max-min<2*quant){//early stop
|
|
|
|
min=FFMIN(min,p2); max=FFMAX(max,p2);
|
|
|
|
min=FFMIN(min,p4); max=FFMAX(max,p4);
|
|
|
|
min=FFMIN(min,p6); max=FFMAX(max,p6);
|
|
|
|
min=FFMIN(min,p7); max=FFMAX(max,p7);
|
|
|
|
if(max-min<2*quant){
|
|
|
|
ptr[-2*a_stride]=(4*p2 + 3*p3 + 1*p7 + 4)>>3;
|
|
|
|
ptr[-1*a_stride]=(3*p2 + 3*p4 + 2*p7 + 4)>>3;
|
|
|
|
ptr[ 0 ]=(2*p2 + 3*p5 + 3*p7 + 4)>>3;
|
|
|
|
ptr[ 1*a_stride]=(1*p2 + 3*p6 + 4*p7 + 4)>>3;
|
|
|
|
continue;
|
|
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
{
|
|
|
|
int x,x0,x1,x2;
|
|
|
|
int m;
|
|
|
|
|
|
|
|
x0 = (2*p3 - 5*p4 + 5*p5 - 2*p6 + 4)>>3;
|
|
|
|
if(FFABS(x0) < quant){
|
|
|
|
x1=(2*p1 - 5*p2 + 5*p3 - 2*p4 + 4)>>3;
|
|
|
|
x2=(2*p5 - 5*p6 + 5*p7 - 2*p8 + 4)>>3;
|
|
|
|
|
|
|
|
x=FFABS(x0) - FFMIN( FFABS(x1), FFABS(x2) );
|
|
|
|
m=p4-p5;
|
|
|
|
|
|
|
|
if( x > 0 && (m^x0) <0){
|
|
|
|
int32_t sign;
|
|
|
|
|
|
|
|
sign=m>>31;
|
|
|
|
m=(m^sign)-sign;//abs(m)
|
|
|
|
m>>=1;
|
|
|
|
|
|
|
|
x=(5*x)>>3;
|
|
|
|
|
|
|
|
if(x>m) x=m;
|
|
|
|
|
|
|
|
x=(x^sign)-sign;
|
|
|
|
|
|
|
|
ptr[-1*a_stride] -= x;
|
|
|
|
ptr[ 0] += x;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void x8_h_loop_filter(uint8_t *src, int stride, int qscale){
|
|
|
|
x8_loop_filter(src, stride, 1, qscale);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void x8_v_loop_filter(uint8_t *src, int stride, int qscale){
|
|
|
|
x8_loop_filter(src, 1, stride, qscale);
|
|
|
|
}
|
|
|
|
|
|
|
|
av_cold void ff_intrax8dsp_init(DSPContext* dsp, AVCodecContext *avctx) {
|
|
|
|
dsp->x8_h_loop_filter=x8_h_loop_filter;
|
|
|
|
dsp->x8_v_loop_filter=x8_v_loop_filter;
|
|
|
|
dsp->x8_setup_spatial_compensation=x8_setup_spatial_compensation;
|
|
|
|
dsp->x8_spatial_compensation[0]=spatial_compensation_0;
|
|
|
|
dsp->x8_spatial_compensation[1]=spatial_compensation_1;
|
|
|
|
dsp->x8_spatial_compensation[2]=spatial_compensation_2;
|
|
|
|
dsp->x8_spatial_compensation[3]=spatial_compensation_3;
|
|
|
|
dsp->x8_spatial_compensation[4]=spatial_compensation_4;
|
|
|
|
dsp->x8_spatial_compensation[5]=spatial_compensation_5;
|
|
|
|
dsp->x8_spatial_compensation[6]=spatial_compensation_6;
|
|
|
|
dsp->x8_spatial_compensation[7]=spatial_compensation_7;
|
|
|
|
dsp->x8_spatial_compensation[8]=spatial_compensation_8;
|
|
|
|
dsp->x8_spatial_compensation[9]=spatial_compensation_9;
|
|
|
|
dsp->x8_spatial_compensation[10]=spatial_compensation_10;
|
|
|
|
dsp->x8_spatial_compensation[11]=spatial_compensation_11;
|
|
|
|
}
|