|
|
|
The basis transforms used for FFT and various other derived functions are based
|
|
|
|
on the following unrollings.
|
|
|
|
The functions can be easily adapted to double precision floats as well.
|
|
|
|
|
|
|
|
# Parity permutation
|
|
|
|
The basis transforms described here all use the following permutation:
|
|
|
|
|
|
|
|
``` C
|
|
|
|
void ff_tx_gen_split_radix_parity_revtab(int *revtab, int len, int inv,
|
|
|
|
int basis, int dual_stride);
|
|
|
|
```
|
|
|
|
Parity means even and odd complex numbers will be split, e.g. the even
|
|
|
|
coefficients will come first, after which the odd coefficients will be
|
|
|
|
placed. For example, a 4-point transform's coefficients after reordering:
|
|
|
|
`z[0].re, z[0].im, z[2].re, z[2].im, z[1].re, z[1].im, z[3].re, z[3].im`
|
|
|
|
|
|
|
|
The basis argument is the length of the largest non-composite transform
|
|
|
|
supported, and also implies that the basis/2 transform is supported as well,
|
|
|
|
as the split-radix algorithm requires it to be.
|
|
|
|
|
|
|
|
The dual_stride argument indicates that both the basis, as well as the
|
|
|
|
basis/2 transforms support doing two transforms at once, and the coefficients
|
|
|
|
will be interleaved between each pair in a split-radix like so (stride == 2):
|
|
|
|
`tx1[0], tx1[2], tx2[0], tx2[2], tx1[1], tx1[3], tx2[1], tx2[3]`
|
|
|
|
A non-zero number switches this on, with the value indicating the stride
|
|
|
|
(how many values of 1 transform to put first before switching to the other).
|
|
|
|
Must be a power of two or 0. Must be less than the basis.
|
|
|
|
Value will be clipped to the transform size, so for a basis of 16 and a
|
|
|
|
dual_stride of 8, dual 8-point transforms will be laid out as if dual_stride
|
|
|
|
was set to 4.
|
|
|
|
Usually you'll set this to half the complex numbers that fit in a single
|
|
|
|
register or 0. This allows to reuse SSE functions as dual-transform
|
|
|
|
functions in AVX mode.
|
|
|
|
If length is smaller than basis/2 this function will not do anything.
|
|
|
|
|
|
|
|
# 4-point FFT transform
|
|
|
|
The only permutation this transform needs is to swap the `z[1]` and `z[2]`
|
|
|
|
elements when performing an inverse transform, which in the assembly code is
|
|
|
|
hardcoded with the function itself being templated and duplicated for each
|
|
|
|
direction.
|
|
|
|
|
|
|
|
``` C
|
|
|
|
static void fft4(FFTComplex *z)
|
|
|
|
{
|
|
|
|
FFTSample r1 = z[0].re - z[2].re;
|
|
|
|
FFTSample r2 = z[0].im - z[2].im;
|
|
|
|
FFTSample r3 = z[1].re - z[3].re;
|
|
|
|
FFTSample r4 = z[1].im - z[3].im;
|
|
|
|
/* r5-r8 second transform */
|
|
|
|
|
|
|
|
FFTSample t1 = z[0].re + z[2].re;
|
|
|
|
FFTSample t2 = z[0].im + z[2].im;
|
|
|
|
FFTSample t3 = z[1].re + z[3].re;
|
|
|
|
FFTSample t4 = z[1].im + z[3].im;
|
|
|
|
/* t5-t8 second transform */
|
|
|
|
|
|
|
|
/* 1sub + 1add = 2 instructions */
|
|
|
|
|
|
|
|
/* 2 shufs */
|
|
|
|
FFTSample a3 = t1 - t3;
|
|
|
|
FFTSample a4 = t2 - t4;
|
|
|
|
FFTSample b3 = r1 - r4;
|
|
|
|
FFTSample b2 = r2 - r3;
|
|
|
|
|
|
|
|
FFTSample a1 = t1 + t3;
|
|
|
|
FFTSample a2 = t2 + t4;
|
|
|
|
FFTSample b1 = r1 + r4;
|
|
|
|
FFTSample b4 = r2 + r3;
|
|
|
|
/* 1 add 1 sub 3 shufs */
|
|
|
|
|
|
|
|
z[0].re = a1;
|
|
|
|
z[0].im = a2;
|
|
|
|
z[2].re = a3;
|
|
|
|
z[2].im = a4;
|
|
|
|
|
|
|
|
z[1].re = b1;
|
|
|
|
z[1].im = b2;
|
|
|
|
z[3].re = b3;
|
|
|
|
z[3].im = b4;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
# 8-point AVX FFT transform
|
|
|
|
Input must be pre-permuted using the parity lookup table, generated via
|
|
|
|
`ff_tx_gen_split_radix_parity_revtab`.
|
|
|
|
|
|
|
|
``` C
|
|
|
|
static void fft8(FFTComplex *z)
|
|
|
|
{
|
|
|
|
FFTSample r1 = z[0].re - z[4].re;
|
|
|
|
FFTSample r2 = z[0].im - z[4].im;
|
|
|
|
FFTSample r3 = z[1].re - z[5].re;
|
|
|
|
FFTSample r4 = z[1].im - z[5].im;
|
|
|
|
|
|
|
|
FFTSample r5 = z[2].re - z[6].re;
|
|
|
|
FFTSample r6 = z[2].im - z[6].im;
|
|
|
|
FFTSample r7 = z[3].re - z[7].re;
|
|
|
|
FFTSample r8 = z[3].im - z[7].im;
|
|
|
|
|
|
|
|
FFTSample q1 = z[0].re + z[4].re;
|
|
|
|
FFTSample q2 = z[0].im + z[4].im;
|
|
|
|
FFTSample q3 = z[1].re + z[5].re;
|
|
|
|
FFTSample q4 = z[1].im + z[5].im;
|
|
|
|
|
|
|
|
FFTSample q5 = z[2].re + z[6].re;
|
|
|
|
FFTSample q6 = z[2].im + z[6].im;
|
|
|
|
FFTSample q7 = z[3].re + z[7].re;
|
|
|
|
FFTSample q8 = z[3].im + z[7].im;
|
|
|
|
|
|
|
|
FFTSample s3 = q1 - q3;
|
|
|
|
FFTSample s1 = q1 + q3;
|
|
|
|
FFTSample s4 = q2 - q4;
|
|
|
|
FFTSample s2 = q2 + q4;
|
|
|
|
|
|
|
|
FFTSample s7 = q5 - q7;
|
|
|
|
FFTSample s5 = q5 + q7;
|
|
|
|
FFTSample s8 = q6 - q8;
|
|
|
|
FFTSample s6 = q6 + q8;
|
|
|
|
|
|
|
|
FFTSample e1 = s1 * -1;
|
|
|
|
FFTSample e2 = s2 * -1;
|
|
|
|
FFTSample e3 = s3 * -1;
|
|
|
|
FFTSample e4 = s4 * -1;
|
|
|
|
|
|
|
|
FFTSample e5 = s5 * 1;
|
|
|
|
FFTSample e6 = s6 * 1;
|
|
|
|
FFTSample e7 = s7 * -1;
|
|
|
|
FFTSample e8 = s8 * 1;
|
|
|
|
|
|
|
|
FFTSample w1 = e5 - e1;
|
|
|
|
FFTSample w2 = e6 - e2;
|
|
|
|
FFTSample w3 = e8 - e3;
|
|
|
|
FFTSample w4 = e7 - e4;
|
|
|
|
|
|
|
|
FFTSample w5 = s1 - e5;
|
|
|
|
FFTSample w6 = s2 - e6;
|
|
|
|
FFTSample w7 = s3 - e8;
|
|
|
|
FFTSample w8 = s4 - e7;
|
|
|
|
|
|
|
|
z[0].re = w1;
|
|
|
|
z[0].im = w2;
|
|
|
|
z[2].re = w3;
|
|
|
|
z[2].im = w4;
|
|
|
|
z[4].re = w5;
|
|
|
|
z[4].im = w6;
|
|
|
|
z[6].re = w7;
|
|
|
|
z[6].im = w8;
|
|
|
|
|
|
|
|
FFTSample z1 = r1 - r4;
|
|
|
|
FFTSample z2 = r1 + r4;
|
|
|
|
FFTSample z3 = r3 - r2;
|
|
|
|
FFTSample z4 = r3 + r2;
|
|
|
|
|
|
|
|
FFTSample z5 = r5 - r6;
|
|
|
|
FFTSample z6 = r5 + r6;
|
|
|
|
FFTSample z7 = r7 - r8;
|
|
|
|
FFTSample z8 = r7 + r8;
|
|
|
|
|
|
|
|
z3 *= -1;
|
|
|
|
z5 *= -M_SQRT1_2;
|
|
|
|
z6 *= -M_SQRT1_2;
|
|
|
|
z7 *= M_SQRT1_2;
|
|
|
|
z8 *= M_SQRT1_2;
|
|
|
|
|
|
|
|
FFTSample t5 = z7 - z6;
|
|
|
|
FFTSample t6 = z8 + z5;
|
|
|
|
FFTSample t7 = z8 - z5;
|
|
|
|
FFTSample t8 = z7 + z6;
|
|
|
|
|
|
|
|
FFTSample u1 = z2 + t5;
|
|
|
|
FFTSample u2 = z3 + t6;
|
|
|
|
FFTSample u3 = z1 - t7;
|
|
|
|
FFTSample u4 = z4 + t8;
|
|
|
|
|
|
|
|
FFTSample u5 = z2 - t5;
|
|
|
|
FFTSample u6 = z3 - t6;
|
|
|
|
FFTSample u7 = z1 + t7;
|
|
|
|
FFTSample u8 = z4 - t8;
|
|
|
|
|
|
|
|
z[1].re = u1;
|
|
|
|
z[1].im = u2;
|
|
|
|
z[3].re = u3;
|
|
|
|
z[3].im = u4;
|
|
|
|
z[5].re = u5;
|
|
|
|
z[5].im = u6;
|
|
|
|
z[7].re = u7;
|
|
|
|
z[7].im = u8;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
As you can see, there are 2 independent paths, one for even and one for odd coefficients.
|
|
|
|
This theme continues throughout the document. Note that in the actual assembly code,
|
|
|
|
the paths are interleaved to improve unit saturation and CPU dependency tracking, so
|
|
|
|
to more clearly see them, you'll need to deinterleave the instructions.
|
|
|
|
|
|
|
|
# 8-point SSE/ARM64 FFT transform
|
|
|
|
Input must be pre-permuted using the parity lookup table, generated via
|
|
|
|
`ff_tx_gen_split_radix_parity_revtab`.
|
|
|
|
|
|
|
|
``` C
|
|
|
|
static void fft8(FFTComplex *z)
|
|
|
|
{
|
|
|
|
FFTSample r1 = z[0].re - z[4].re;
|
|
|
|
FFTSample r2 = z[0].im - z[4].im;
|
|
|
|
FFTSample r3 = z[1].re - z[5].re;
|
|
|
|
FFTSample r4 = z[1].im - z[5].im;
|
|
|
|
|
|
|
|
FFTSample j1 = z[2].re - z[6].re;
|
|
|
|
FFTSample j2 = z[2].im - z[6].im;
|
|
|
|
FFTSample j3 = z[3].re - z[7].re;
|
|
|
|
FFTSample j4 = z[3].im - z[7].im;
|
|
|
|
|
|
|
|
FFTSample q1 = z[0].re + z[4].re;
|
|
|
|
FFTSample q2 = z[0].im + z[4].im;
|
|
|
|
FFTSample q3 = z[1].re + z[5].re;
|
|
|
|
FFTSample q4 = z[1].im + z[5].im;
|
|
|
|
|
|
|
|
FFTSample k1 = z[2].re + z[6].re;
|
|
|
|
FFTSample k2 = z[2].im + z[6].im;
|
|
|
|
FFTSample k3 = z[3].re + z[7].re;
|
|
|
|
FFTSample k4 = z[3].im + z[7].im;
|
|
|
|
/* 2 add 2 sub = 4 */
|
|
|
|
|
|
|
|
/* 2 shufs, 1 add 1 sub = 4 */
|
|
|
|
FFTSample s1 = q1 + q3;
|
|
|
|
FFTSample s2 = q2 + q4;
|
|
|
|
FFTSample g1 = k3 + k1;
|
|
|
|
FFTSample g2 = k2 + k4;
|
|
|
|
|
|
|
|
FFTSample s3 = q1 - q3;
|
|
|
|
FFTSample s4 = q2 - q4;
|
|
|
|
FFTSample g4 = k3 - k1;
|
|
|
|
FFTSample g3 = k2 - k4;
|
|
|
|
|
|
|
|
/* 1 unpack + 1 shuffle = 2 */
|
|
|
|
|
|
|
|
/* 1 add */
|
|
|
|
FFTSample w1 = s1 + g1;
|
|
|
|
FFTSample w2 = s2 + g2;
|
|
|
|
FFTSample w3 = s3 + g3;
|
|
|
|
FFTSample w4 = s4 + g4;
|
|
|
|
|
|
|
|
/* 1 sub */
|
|
|
|
FFTSample h1 = s1 - g1;
|
|
|
|
FFTSample h2 = s2 - g2;
|
|
|
|
FFTSample h3 = s3 - g3;
|
|
|
|
FFTSample h4 = s4 - g4;
|
|
|
|
|
|
|
|
z[0].re = w1;
|
|
|
|
z[0].im = w2;
|
|
|
|
z[2].re = w3;
|
|
|
|
z[2].im = w4;
|
|
|
|
z[4].re = h1;
|
|
|
|
z[4].im = h2;
|
|
|
|
z[6].re = h3;
|
|
|
|
z[6].im = h4;
|
|
|
|
|
|
|
|
/* 1 shuf + 1 shuf + 1 xor + 1 addsub */
|
|
|
|
FFTSample z1 = r1 + r4;
|
|
|
|
FFTSample z2 = r2 - r3;
|
|
|
|
FFTSample z3 = r1 - r4;
|
|
|
|
FFTSample z4 = r2 + r3;
|
|
|
|
|
|
|
|
/* 1 mult */
|
|
|
|
j1 *= M_SQRT1_2;
|
|
|
|
j2 *= -M_SQRT1_2;
|
|
|
|
j3 *= -M_SQRT1_2;
|
|
|
|
j4 *= M_SQRT1_2;
|
|
|
|
|
|
|
|
/* 1 shuf + 1 addsub */
|
|
|
|
FFTSample l2 = j1 - j2;
|
|
|
|
FFTSample l1 = j2 + j1;
|
|
|
|
FFTSample l4 = j3 - j4;
|
|
|
|
FFTSample l3 = j4 + j3;
|
|
|
|
|
|
|
|
/* 1 shuf + 1 addsub */
|
|
|
|
FFTSample t1 = l3 - l2;
|
|
|
|
FFTSample t2 = l4 + l1;
|
|
|
|
FFTSample t3 = l1 - l4;
|
|
|
|
FFTSample t4 = l2 + l3;
|
|
|
|
|
|
|
|
/* 1 add */
|
|
|
|
FFTSample u1 = z1 - t1;
|
|
|
|
FFTSample u2 = z2 - t2;
|
|
|
|
FFTSample u3 = z3 - t3;
|
|
|
|
FFTSample u4 = z4 - t4;
|
|
|
|
|
|
|
|
/* 1 sub */
|
|
|
|
FFTSample o1 = z1 + t1;
|
|
|
|
FFTSample o2 = z2 + t2;
|
|
|
|
FFTSample o3 = z3 + t3;
|
|
|
|
FFTSample o4 = z4 + t4;
|
|
|
|
|
|
|
|
z[1].re = u1;
|
|
|
|
z[1].im = u2;
|
|
|
|
z[3].re = u3;
|
|
|
|
z[3].im = u4;
|
|
|
|
z[5].re = o1;
|
|
|
|
z[5].im = o2;
|
|
|
|
z[7].re = o3;
|
|
|
|
z[7].im = o4;
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
Most functions here are highly tuned to use x86's addsub instruction to save on
|
|
|
|
external sign mask loading.
|
|
|
|
|
|
|
|
# 16-point AVX FFT transform
|
|
|
|
This version expects the output of the 8 and 4-point transforms to follow the
|
|
|
|
even/odd convention established above.
|
|
|
|
|
|
|
|
``` C
|
|
|
|
static void fft16(FFTComplex *z)
|
|
|
|
{
|
|
|
|
FFTSample cos_16_1 = 0.92387950420379638671875f;
|
|
|
|
FFTSample cos_16_3 = 0.3826834261417388916015625f;
|
|
|
|
|
|
|
|
fft8(z);
|
|
|
|
fft4(z+8);
|
|
|
|
fft4(z+10);
|
|
|
|
|
|
|
|
FFTSample s[32];
|
|
|
|
|
|
|
|
/*
|
|
|
|
xorps m1, m1 - free
|
|
|
|
mulps m0
|
|
|
|
shufps m1, m1, m0
|
|
|
|
xorps
|
|
|
|
addsub
|
|
|
|
shufps
|
|
|
|
mulps
|
|
|
|
mulps
|
|
|
|
addps
|
|
|
|
or (fma3)
|
|
|
|
shufps
|
|
|
|
shufps
|
|
|
|
mulps
|
|
|
|
mulps
|
|
|
|
fma
|
|
|
|
fma
|
|
|
|
*/
|
|
|
|
|
|
|
|
s[0] = z[8].re*( 1) - z[8].im*( 0);
|
|
|
|
s[1] = z[8].im*( 1) + z[8].re*( 0);
|
|
|
|
s[2] = z[9].re*( 1) - z[9].im*(-1);
|
|
|
|
s[3] = z[9].im*( 1) + z[9].re*(-1);
|
|
|
|
|
|
|
|
s[4] = z[10].re*( 1) - z[10].im*( 0);
|
|
|
|
s[5] = z[10].im*( 1) + z[10].re*( 0);
|
|
|
|
s[6] = z[11].re*( 1) - z[11].im*( 1);
|
|
|
|
s[7] = z[11].im*( 1) + z[11].re*( 1);
|
|
|
|
|
|
|
|
s[8] = z[12].re*( cos_16_1) - z[12].im*( -cos_16_3);
|
|
|
|
s[9] = z[12].im*( cos_16_1) + z[12].re*( -cos_16_3);
|
|
|
|
s[10] = z[13].re*( cos_16_3) - z[13].im*( -cos_16_1);
|
|
|
|
s[11] = z[13].im*( cos_16_3) + z[13].re*( -cos_16_1);
|
|
|
|
|
|
|
|
s[12] = z[14].re*( cos_16_1) - z[14].im*( cos_16_3);
|
|
|
|
s[13] = z[14].im*( -cos_16_1) + z[14].re*( -cos_16_3);
|
|
|
|
s[14] = z[15].re*( cos_16_3) - z[15].im*( cos_16_1);
|
|
|
|
s[15] = z[15].im*( -cos_16_3) + z[15].re*( -cos_16_1);
|
|
|
|
|
|
|
|
s[2] *= M_SQRT1_2;
|
|
|
|
s[3] *= M_SQRT1_2;
|
|
|
|
s[5] *= -1;
|
|
|
|
s[6] *= M_SQRT1_2;
|
|
|
|
s[7] *= -M_SQRT1_2;
|
|
|
|
|
|
|
|
FFTSample w5 = s[0] + s[4];
|
|
|
|
FFTSample w6 = s[1] - s[5];
|
|
|
|
FFTSample x5 = s[2] + s[6];
|
|
|
|
FFTSample x6 = s[3] - s[7];
|
|
|
|
|
|
|
|
FFTSample w3 = s[4] - s[0];
|
|
|
|
FFTSample w4 = s[5] + s[1];
|
|
|
|
FFTSample x3 = s[6] - s[2];
|
|
|
|
FFTSample x4 = s[7] + s[3];
|
|
|
|
|
|
|
|
FFTSample y5 = s[8] + s[12];
|
|
|
|
FFTSample y6 = s[9] - s[13];
|
|
|
|
FFTSample u5 = s[10] + s[14];
|
|
|
|
FFTSample u6 = s[11] - s[15];
|
|
|
|
|
|
|
|
FFTSample y3 = s[12] - s[8];
|
|
|
|
FFTSample y4 = s[13] + s[9];
|
|
|
|
FFTSample u3 = s[14] - s[10];
|
|
|
|
FFTSample u4 = s[15] + s[11];
|
|
|
|
|
|
|
|
/* 2xorps, 2vperm2fs, 2 adds, 2 vpermilps = 8 */
|
|
|
|
|
|
|
|
FFTSample o1 = z[0].re + w5;
|
|
|
|
FFTSample o2 = z[0].im + w6;
|
|
|
|
FFTSample o5 = z[1].re + x5;
|
|
|
|
FFTSample o6 = z[1].im + x6;
|
|
|
|
FFTSample o9 = z[2].re + w4; //h
|
|
|
|
FFTSample o10 = z[2].im + w3;
|
|
|
|
FFTSample o13 = z[3].re + x4;
|
|
|
|
FFTSample o14 = z[3].im + x3;
|
|
|
|
|
|
|
|
FFTSample o17 = z[0].re - w5;
|
|
|
|
FFTSample o18 = z[0].im - w6;
|
|
|
|
FFTSample o21 = z[1].re - x5;
|
|
|
|
FFTSample o22 = z[1].im - x6;
|
|
|
|
FFTSample o25 = z[2].re - w4; //h
|
|
|
|
FFTSample o26 = z[2].im - w3;
|
|
|
|
FFTSample o29 = z[3].re - x4;
|
|
|
|
FFTSample o30 = z[3].im - x3;
|
|
|
|
|
|
|
|
FFTSample o3 = z[4].re + y5;
|
|
|
|
FFTSample o4 = z[4].im + y6;
|
|
|
|
FFTSample o7 = z[5].re + u5;
|
|
|
|
FFTSample o8 = z[5].im + u6;
|
|
|
|
FFTSample o11 = z[6].re + y4; //h
|
|
|
|
FFTSample o12 = z[6].im + y3;
|
|
|
|
FFTSample o15 = z[7].re + u4;
|
|
|
|
FFTSample o16 = z[7].im + u3;
|
|
|
|
|
|
|
|
FFTSample o19 = z[4].re - y5;
|
|
|
|
FFTSample o20 = z[4].im - y6;
|
|
|
|
FFTSample o23 = z[5].re - u5;
|
|
|
|
FFTSample o24 = z[5].im - u6;
|
|
|
|
FFTSample o27 = z[6].re - y4; //h
|
|
|
|
FFTSample o28 = z[6].im - y3;
|
|
|
|
FFTSample o31 = z[7].re - u4;
|
|
|
|
FFTSample o32 = z[7].im - u3;
|
|
|
|
|
|
|
|
/* This is just deinterleaving, happens separately */
|
|
|
|
z[0] = (FFTComplex){ o1, o2 };
|
|
|
|
z[1] = (FFTComplex){ o3, o4 };
|
|
|
|
z[2] = (FFTComplex){ o5, o6 };
|
|
|
|
z[3] = (FFTComplex){ o7, o8 };
|
|
|
|
z[4] = (FFTComplex){ o9, o10 };
|
|
|
|
z[5] = (FFTComplex){ o11, o12 };
|
|
|
|
z[6] = (FFTComplex){ o13, o14 };
|
|
|
|
z[7] = (FFTComplex){ o15, o16 };
|
|
|
|
|
|
|
|
z[8] = (FFTComplex){ o17, o18 };
|
|
|
|
z[9] = (FFTComplex){ o19, o20 };
|
|
|
|
z[10] = (FFTComplex){ o21, o22 };
|
|
|
|
z[11] = (FFTComplex){ o23, o24 };
|
|
|
|
z[12] = (FFTComplex){ o25, o26 };
|
|
|
|
z[13] = (FFTComplex){ o27, o28 };
|
|
|
|
z[14] = (FFTComplex){ o29, o30 };
|
|
|
|
z[15] = (FFTComplex){ o31, o32 };
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
# AVX split-radix synthesis
|
|
|
|
To create larger transforms, the following unrolling of the C split-radix
|
|
|
|
function is used.
|
|
|
|
|
|
|
|
``` C
|
|
|
|
#define BF(x, y, a, b) \
|
|
|
|
do { \
|
|
|
|
x = (a) - (b); \
|
|
|
|
y = (a) + (b); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define BUTTERFLIES(a0,a1,a2,a3) \
|
|
|
|
do { \
|
|
|
|
r0=a0.re; \
|
|
|
|
i0=a0.im; \
|
|
|
|
r1=a1.re; \
|
|
|
|
i1=a1.im; \
|
|
|
|
BF(q3, q5, q5, q1); \
|
|
|
|
BF(a2.re, a0.re, r0, q5); \
|
|
|
|
BF(a3.im, a1.im, i1, q3); \
|
|
|
|
BF(q4, q6, q2, q6); \
|
|
|
|
BF(a3.re, a1.re, r1, q4); \
|
|
|
|
BF(a2.im, a0.im, i0, q6); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#undef TRANSFORM
|
|
|
|
#define TRANSFORM(a0,a1,a2,a3,wre,wim) \
|
|
|
|
do { \
|
|
|
|
CMUL(q1, q2, a2.re, a2.im, wre, -wim); \
|
|
|
|
CMUL(q5, q6, a3.re, a3.im, wre, wim); \
|
|
|
|
BUTTERFLIES(a0, a1, a2, a3); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define CMUL(dre, dim, are, aim, bre, bim) \
|
|
|
|
do { \
|
|
|
|
(dre) = (are) * (bre) - (aim) * (bim); \
|
|
|
|
(dim) = (are) * (bim) + (aim) * (bre); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
static void recombine(FFTComplex *z, const FFTSample *cos,
|
|
|
|
unsigned int n)
|
|
|
|
{
|
|
|
|
const int o1 = 2*n;
|
|
|
|
const int o2 = 4*n;
|
|
|
|
const int o3 = 6*n;
|
|
|
|
const FFTSample *wim = cos + o1 - 7;
|
|
|
|
FFTSample q1, q2, q3, q4, q5, q6, r0, i0, r1, i1;
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
for (int i = 0; i < n; i += 4) {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
TRANSFORM(z[ 0 + 0], z[ 0 + 4], z[o2 + 0], z[o2 + 2], cos[0], wim[7]);
|
|
|
|
TRANSFORM(z[ 0 + 1], z[ 0 + 5], z[o2 + 1], z[o2 + 3], cos[2], wim[5]);
|
|
|
|
TRANSFORM(z[ 0 + 2], z[ 0 + 6], z[o2 + 4], z[o2 + 6], cos[4], wim[3]);
|
|
|
|
TRANSFORM(z[ 0 + 3], z[ 0 + 7], z[o2 + 5], z[o2 + 7], cos[6], wim[1]);
|
|
|
|
|
|
|
|
TRANSFORM(z[o1 + 0], z[o1 + 4], z[o3 + 0], z[o3 + 2], cos[1], wim[6]);
|
|
|
|
TRANSFORM(z[o1 + 1], z[o1 + 5], z[o3 + 1], z[o3 + 3], cos[3], wim[4]);
|
|
|
|
TRANSFORM(z[o1 + 2], z[o1 + 6], z[o3 + 4], z[o3 + 6], cos[5], wim[2]);
|
|
|
|
TRANSFORM(z[o1 + 3], z[o1 + 7], z[o3 + 5], z[o3 + 7], cos[7], wim[0]);
|
|
|
|
#else
|
|
|
|
FFTSample h[8], j[8], r[8], w[8];
|
|
|
|
FFTSample t[8];
|
|
|
|
FFTComplex *m0 = &z[0];
|
|
|
|
FFTComplex *m1 = &z[4];
|
|
|
|
FFTComplex *m2 = &z[o2 + 0];
|
|
|
|
FFTComplex *m3 = &z[o2 + 4];
|
|
|
|
|
|
|
|
const FFTSample *t1 = &cos[0];
|
|
|
|
const FFTSample *t2 = &wim[0];
|
|
|
|
|
|
|
|
/* 2 loads (tabs) */
|
|
|
|
|
|
|
|
/* 2 vperm2fs, 2 shufs (im), 2 shufs (tabs) */
|
|
|
|
/* 1 xor, 1 add, 1 sub, 4 mults OR 2 mults, 2 fmas */
|
|
|
|
/* 13 OR 10ish (-2 each for second passovers!) */
|
|
|
|
|
|
|
|
w[0] = m2[0].im*t1[0] - m2[0].re*t2[7];
|
|
|
|
w[1] = m2[0].re*t1[0] + m2[0].im*t2[7];
|
|
|
|
w[2] = m2[1].im*t1[2] - m2[1].re*t2[5];
|
|
|
|
w[3] = m2[1].re*t1[2] + m2[1].im*t2[5];
|
|
|
|
w[4] = m3[0].im*t1[4] - m3[0].re*t2[3];
|
|
|
|
w[5] = m3[0].re*t1[4] + m3[0].im*t2[3];
|
|
|
|
w[6] = m3[1].im*t1[6] - m3[1].re*t2[1];
|
|
|
|
w[7] = m3[1].re*t1[6] + m3[1].im*t2[1];
|
|
|
|
|
|
|
|
j[0] = m2[2].im*t1[0] + m2[2].re*t2[7];
|
|
|
|
j[1] = m2[2].re*t1[0] - m2[2].im*t2[7];
|
|
|
|
j[2] = m2[3].im*t1[2] + m2[3].re*t2[5];
|
|
|
|
j[3] = m2[3].re*t1[2] - m2[3].im*t2[5];
|
|
|
|
j[4] = m3[2].im*t1[4] + m3[2].re*t2[3];
|
|
|
|
j[5] = m3[2].re*t1[4] - m3[2].im*t2[3];
|
|
|
|
j[6] = m3[3].im*t1[6] + m3[3].re*t2[1];
|
|
|
|
j[7] = m3[3].re*t1[6] - m3[3].im*t2[1];
|
|
|
|
|
|
|
|
/* 1 add + 1 shuf */
|
|
|
|
t[1] = j[0] + w[0];
|
|
|
|
t[0] = j[1] + w[1];
|
|
|
|
t[3] = j[2] + w[2];
|
|
|
|
t[2] = j[3] + w[3];
|
|
|
|
t[5] = j[4] + w[4];
|
|
|
|
t[4] = j[5] + w[5];
|
|
|
|
t[7] = j[6] + w[6];
|
|
|
|
t[6] = j[7] + w[7];
|
|
|
|
|
|
|
|
/* 1 sub + 1 xor */
|
|
|
|
r[0] = (w[0] - j[0]);
|
|
|
|
r[1] = -(w[1] - j[1]);
|
|
|
|
r[2] = (w[2] - j[2]);
|
|
|
|
r[3] = -(w[3] - j[3]);
|
|
|
|
r[4] = (w[4] - j[4]);
|
|
|
|
r[5] = -(w[5] - j[5]);
|
|
|
|
r[6] = (w[6] - j[6]);
|
|
|
|
r[7] = -(w[7] - j[7]);
|
|
|
|
|
|
|
|
/* Min: 2 subs, 2 adds, 2 vperm2fs (OPTIONAL) */
|
|
|
|
m2[0].re = m0[0].re - t[0];
|
|
|
|
m2[0].im = m0[0].im - t[1];
|
|
|
|
m2[1].re = m0[1].re - t[2];
|
|
|
|
m2[1].im = m0[1].im - t[3];
|
|
|
|
m3[0].re = m0[2].re - t[4];
|
|
|
|
m3[0].im = m0[2].im - t[5];
|
|
|
|
m3[1].re = m0[3].re - t[6];
|
|
|
|
m3[1].im = m0[3].im - t[7];
|
|
|
|
|
|
|
|
m2[2].re = m1[0].re - r[0];
|
|
|
|
m2[2].im = m1[0].im - r[1];
|
|
|
|
m2[3].re = m1[1].re - r[2];
|
|
|
|
m2[3].im = m1[1].im - r[3];
|
|
|
|
m3[2].re = m1[2].re - r[4];
|
|
|
|
m3[2].im = m1[2].im - r[5];
|
|
|
|
m3[3].re = m1[3].re - r[6];
|
|
|
|
m3[3].im = m1[3].im - r[7];
|
|
|
|
|
|
|
|
m0[0].re = m0[0].re + t[0];
|
|
|
|
m0[0].im = m0[0].im + t[1];
|
|
|
|
m0[1].re = m0[1].re + t[2];
|
|
|
|
m0[1].im = m0[1].im + t[3];
|
|
|
|
m0[2].re = m0[2].re + t[4];
|
|
|
|
m0[2].im = m0[2].im + t[5];
|
|
|
|
m0[3].re = m0[3].re + t[6];
|
|
|
|
m0[3].im = m0[3].im + t[7];
|
|
|
|
|
|
|
|
m1[0].re = m1[0].re + r[0];
|
|
|
|
m1[0].im = m1[0].im + r[1];
|
|
|
|
m1[1].re = m1[1].re + r[2];
|
|
|
|
m1[1].im = m1[1].im + r[3];
|
|
|
|
m1[2].re = m1[2].re + r[4];
|
|
|
|
m1[2].im = m1[2].im + r[5];
|
|
|
|
m1[3].re = m1[3].re + r[6];
|
|
|
|
m1[3].im = m1[3].im + r[7];
|
|
|
|
|
|
|
|
/* Identical for below, but with the following parameters */
|
|
|
|
m0 = &z[o1];
|
|
|
|
m1 = &z[o1 + 4];
|
|
|
|
m2 = &z[o3 + 0];
|
|
|
|
m3 = &z[o3 + 4];
|
|
|
|
t1 = &cos[1];
|
|
|
|
t2 = &wim[-1];
|
|
|
|
|
|
|
|
w[0] = m2[0].im*t1[0] - m2[0].re*t2[7];
|
|
|
|
w[1] = m2[0].re*t1[0] + m2[0].im*t2[7];
|
|
|
|
w[2] = m2[1].im*t1[2] - m2[1].re*t2[5];
|
|
|
|
w[3] = m2[1].re*t1[2] + m2[1].im*t2[5];
|
|
|
|
w[4] = m3[0].im*t1[4] - m3[0].re*t2[3];
|
|
|
|
w[5] = m3[0].re*t1[4] + m3[0].im*t2[3];
|
|
|
|
w[6] = m3[1].im*t1[6] - m3[1].re*t2[1];
|
|
|
|
w[7] = m3[1].re*t1[6] + m3[1].im*t2[1];
|
|
|
|
|
|
|
|
j[0] = m2[2].im*t1[0] + m2[2].re*t2[7];
|
|
|
|
j[1] = m2[2].re*t1[0] - m2[2].im*t2[7];
|
|
|
|
j[2] = m2[3].im*t1[2] + m2[3].re*t2[5];
|
|
|
|
j[3] = m2[3].re*t1[2] - m2[3].im*t2[5];
|
|
|
|
j[4] = m3[2].im*t1[4] + m3[2].re*t2[3];
|
|
|
|
j[5] = m3[2].re*t1[4] - m3[2].im*t2[3];
|
|
|
|
j[6] = m3[3].im*t1[6] + m3[3].re*t2[1];
|
|
|
|
j[7] = m3[3].re*t1[6] - m3[3].im*t2[1];
|
|
|
|
|
|
|
|
/* 1 add + 1 shuf */
|
|
|
|
t[1] = j[0] + w[0];
|
|
|
|
t[0] = j[1] + w[1];
|
|
|
|
t[3] = j[2] + w[2];
|
|
|
|
t[2] = j[3] + w[3];
|
|
|
|
t[5] = j[4] + w[4];
|
|
|
|
t[4] = j[5] + w[5];
|
|
|
|
t[7] = j[6] + w[6];
|
|
|
|
t[6] = j[7] + w[7];
|
|
|
|
|
|
|
|
/* 1 sub + 1 xor */
|
|
|
|
r[0] = (w[0] - j[0]);
|
|
|
|
r[1] = -(w[1] - j[1]);
|
|
|
|
r[2] = (w[2] - j[2]);
|
|
|
|
r[3] = -(w[3] - j[3]);
|
|
|
|
r[4] = (w[4] - j[4]);
|
|
|
|
r[5] = -(w[5] - j[5]);
|
|
|
|
r[6] = (w[6] - j[6]);
|
|
|
|
r[7] = -(w[7] - j[7]);
|
|
|
|
|
|
|
|
/* Min: 2 subs, 2 adds, 2 vperm2fs (OPTIONAL) */
|
|
|
|
m2[0].re = m0[0].re - t[0];
|
|
|
|
m2[0].im = m0[0].im - t[1];
|
|
|
|
m2[1].re = m0[1].re - t[2];
|
|
|
|
m2[1].im = m0[1].im - t[3];
|
|
|
|
m3[0].re = m0[2].re - t[4];
|
|
|
|
m3[0].im = m0[2].im - t[5];
|
|
|
|
m3[1].re = m0[3].re - t[6];
|
|
|
|
m3[1].im = m0[3].im - t[7];
|
|
|
|
|
|
|
|
m2[2].re = m1[0].re - r[0];
|
|
|
|
m2[2].im = m1[0].im - r[1];
|
|
|
|
m2[3].re = m1[1].re - r[2];
|
|
|
|
m2[3].im = m1[1].im - r[3];
|
|
|
|
m3[2].re = m1[2].re - r[4];
|
|
|
|
m3[2].im = m1[2].im - r[5];
|
|
|
|
m3[3].re = m1[3].re - r[6];
|
|
|
|
m3[3].im = m1[3].im - r[7];
|
|
|
|
|
|
|
|
m0[0].re = m0[0].re + t[0];
|
|
|
|
m0[0].im = m0[0].im + t[1];
|
|
|
|
m0[1].re = m0[1].re + t[2];
|
|
|
|
m0[1].im = m0[1].im + t[3];
|
|
|
|
m0[2].re = m0[2].re + t[4];
|
|
|
|
m0[2].im = m0[2].im + t[5];
|
|
|
|
m0[3].re = m0[3].re + t[6];
|
|
|
|
m0[3].im = m0[3].im + t[7];
|
|
|
|
|
|
|
|
m1[0].re = m1[0].re + r[0];
|
|
|
|
m1[0].im = m1[0].im + r[1];
|
|
|
|
m1[1].re = m1[1].re + r[2];
|
|
|
|
m1[1].im = m1[1].im + r[3];
|
|
|
|
m1[2].re = m1[2].re + r[4];
|
|
|
|
m1[2].im = m1[2].im + r[5];
|
|
|
|
m1[3].re = m1[3].re + r[6];
|
|
|
|
m1[3].im = m1[3].im + r[7];
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
z += 4; // !!!
|
|
|
|
cos += 2*4;
|
|
|
|
wim -= 2*4;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
The macros used are identical to those in the generic C version, only with all
|
|
|
|
variable declarations exported to the function body.
|
|
|
|
An important point here is that the high frequency registers (m2 and m3) have
|
|
|
|
their high and low halves swapped in the output. This is intentional, as the
|
|
|
|
inputs must also have the same layout, and therefore, the input swapping is only
|
|
|
|
performed once for the bottom-most basis transform, with all subsequent combinations
|
|
|
|
using the already swapped halves.
|
|
|
|
|
|
|
|
Also note that this function requires a special iteration way, due to coefficients
|
|
|
|
beginning to overlap, particularly `[o1]` with `[0]` after the second iteration.
|
|
|
|
To iterate further, set `z = &z[16]` via `z += 8` for the second iteration. After
|
|
|
|
the 4th iteration, the layout resets, so repeat the same.
|
|
|
|
|
|
|
|
|
|
|
|
# 15-point AVX FFT transform
|
|
|
|
The 15-point transform is based on the following unrolling. The input
|
|
|
|
must be permuted via the following loop:
|
|
|
|
|
|
|
|
``` C
|
|
|
|
for (int k = 0; k < s->sub[0].len; k++) {
|
|
|
|
int cnt = 0;
|
|
|
|
int tmp[15];
|
|
|
|
memcpy(tmp, &s->map[k*15], 15*sizeof(*tmp));
|
|
|
|
for (int i = 1; i < 15; i += 3) {
|
|
|
|
s->map[k*15 + cnt] = tmp[i];
|
|
|
|
cnt++;
|
|
|
|
}
|
|
|
|
for (int i = 2; i < 15; i += 3) {
|
|
|
|
s->map[k*15 + cnt] = tmp[i];
|
|
|
|
cnt++;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < 15; i += 3) {
|
|
|
|
s->map[k*15 + cnt] = tmp[i];
|
|
|
|
cnt++;
|
|
|
|
}
|
|
|
|
memmove(&s->map[k*15 + 7], &s->map[k*15 + 6], 4*sizeof(int));
|
|
|
|
memmove(&s->map[k*15 + 3], &s->map[k*15 + 1], 4*sizeof(int));
|
|
|
|
s->map[k*15 + 1] = tmp[2];
|
|
|
|
s->map[k*15 + 2] = tmp[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
This separates the ACs from the DCs and flips the SIMD direction to
|
|
|
|
performing 5x3pt transforms at once, followed by 3x5pt transforms.
|
|
|
|
|
|
|
|
``` C
|
|
|
|
static av_always_inline void fft15(TXComplex *out, TXComplex *in,
|
|
|
|
ptrdiff_t stride)
|
|
|
|
{
|
|
|
|
const TXSample *tab = TX_TAB(ff_tx_tab_53);
|
|
|
|
TXComplex q[20];
|
|
|
|
TXComplex dc[3], pc[32];
|
|
|
|
TXComplex y[32], k[32];
|
|
|
|
TXComplex t[32];
|
|
|
|
TXComplex r[32];
|
|
|
|
TXComplex z0[32];
|
|
|
|
|
|
|
|
/* DC */
|
|
|
|
pc[0].re = in[ 1].im - in[ 0].im;
|
|
|
|
pc[0].im = in[ 1].re - in[ 0].re;
|
|
|
|
pc[1].re = in[ 1].re + in[ 0].re;
|
|
|
|
pc[1].im = in[ 1].im + in[ 0].im;
|
|
|
|
|
|
|
|
dc[0].re = in[2].re + pc[1].re;
|
|
|
|
dc[0].im = in[2].im + pc[1].im;
|
|
|
|
|
|
|
|
pc[0].re = tab[ 8] * pc[0].re;
|
|
|
|
pc[0].im = tab[ 9] * pc[0].im;
|
|
|
|
pc[1].re = tab[10] * pc[1].re;
|
|
|
|
pc[1].im = tab[11] * pc[1].im;
|
|
|
|
|
|
|
|
dc[1].re = pc[0].re + pc[1].re;
|
|
|
|
dc[1].im = pc[0].im + pc[1].im;
|
|
|
|
dc[2].re = pc[1].re - pc[0].re;
|
|
|
|
dc[2].im = pc[1].im - pc[0].im;
|
|
|
|
|
|
|
|
dc[1].re = in[2].re - dc[1].re;
|
|
|
|
dc[1].im = in[2].im + dc[1].im;
|
|
|
|
dc[2].re = in[2].re - dc[2].re;
|
|
|
|
dc[2].im = in[2].im + dc[2].im;
|
|
|
|
|
|
|
|
/* ACs */
|
|
|
|
q[0].im = in[ 3].re - in[ 7].re; // NOTE THE ORDER
|
|
|
|
q[0].re = in[ 3].im - in[ 7].im;
|
|
|
|
q[1].im = in[ 4].re - in[ 8].re;
|
|
|
|
q[1].re = in[ 4].im - in[ 8].im;
|
|
|
|
q[2].im = in[ 5].re - in[ 9].re;
|
|
|
|
q[2].re = in[ 5].im - in[ 9].im;
|
|
|
|
q[3].re = in[ 6].im - in[10].im;
|
|
|
|
q[3].im = in[ 6].re - in[10].re;
|
|
|
|
|
|
|
|
q[4].re = in[ 3].re + in[ 7].re;
|
|
|
|
q[4].im = in[ 3].im + in[ 7].im;
|
|
|
|
q[5].re = in[ 4].re + in[ 8].re;
|
|
|
|
q[5].im = in[ 4].im + in[ 8].im;
|
|
|
|
q[6].re = in[ 5].re + in[ 9].re;
|
|
|
|
q[6].im = in[ 5].im + in[ 9].im;
|
|
|
|
q[7].re = in[ 6].re + in[10].re;
|
|
|
|
q[7].im = in[ 6].im + in[10].im;
|
|
|
|
|
|
|
|
y[0].re = in[11].re + q[4].re;
|
|
|
|
y[0].im = in[11].im + q[4].im;
|
|
|
|
y[1].re = in[12].re + q[5].re;
|
|
|
|
y[1].im = in[12].im + q[5].im;
|
|
|
|
y[2].re = in[13].re + q[6].re;
|
|
|
|
y[2].im = in[13].im + q[6].im;
|
|
|
|
y[3].re = in[14].re + q[7].re;
|
|
|
|
y[3].im = in[14].im + q[7].im;
|
|
|
|
|
|
|
|
q[0].re = tab[ 8] * q[0].re;
|
|
|
|
q[0].im = tab[ 9] * q[0].im;
|
|
|
|
q[1].re = tab[ 8] * q[1].re;
|
|
|
|
q[1].im = tab[ 9] * q[1].im;
|
|
|
|
q[2].re = tab[ 8] * q[2].re;
|
|
|
|
q[2].im = tab[ 9] * q[2].im;
|
|
|
|
q[3].re = tab[ 8] * q[3].re;
|
|
|
|
q[3].im = tab[ 9] * q[3].im;
|
|
|
|
|
|
|
|
q[4].re = tab[10] * q[4].re;
|
|
|
|
q[4].im = tab[11] * q[4].im;
|
|
|
|
q[5].re = tab[10] * q[5].re;
|
|
|
|
q[5].im = tab[11] * q[5].im;
|
|
|
|
q[6].re = tab[10] * q[6].re;
|
|
|
|
q[6].im = tab[11] * q[6].im;
|
|
|
|
q[7].re = tab[10] * q[7].re;
|
|
|
|
q[7].im = tab[11] * q[7].im;
|
|
|
|
|
|
|
|
k[0].re = q[4].re - q[0].re;
|
|
|
|
k[0].im = q[4].im - q[0].im;
|
|
|
|
k[1].re = q[5].re - q[1].re;
|
|
|
|
k[1].im = q[5].im - q[1].im;
|
|
|
|
k[2].re = q[6].re - q[2].re;
|
|
|
|
k[2].im = q[6].im - q[2].im;
|
|
|
|
k[3].re = q[7].re - q[3].re;
|
|
|
|
k[3].im = q[7].im - q[3].im;
|
|
|
|
|
|
|
|
k[4].re = q[4].re + q[0].re;
|
|
|
|
k[4].im = q[4].im + q[0].im;
|
|
|
|
k[5].re = q[5].re + q[1].re;
|
|
|
|
k[5].im = q[5].im + q[1].im;
|
|
|
|
k[6].re = q[6].re + q[2].re;
|
|
|
|
k[6].im = q[6].im + q[2].im;
|
|
|
|
k[7].re = q[7].re + q[3].re;
|
|
|
|
k[7].im = q[7].im + q[3].im;
|
|
|
|
|
|
|
|
k[0].re = in[11].re - k[0].re;
|
|
|
|
k[0].im = in[11].im + k[0].im;
|
|
|
|
k[1].re = in[12].re - k[1].re;
|
|
|
|
k[1].im = in[12].im + k[1].im;
|
|
|
|
k[2].re = in[13].re - k[2].re;
|
|
|
|
k[2].im = in[13].im + k[2].im;
|
|
|
|
k[3].re = in[14].re - k[3].re;
|
|
|
|
k[3].im = in[14].im + k[3].im;
|
|
|
|
|
|
|
|
k[4].re = in[11].re - k[4].re;
|
|
|
|
k[4].im = in[11].im + k[4].im;
|
|
|
|
k[5].re = in[12].re - k[5].re;
|
|
|
|
k[5].im = in[12].im + k[5].im;
|
|
|
|
k[6].re = in[13].re - k[6].re;
|
|
|
|
k[6].im = in[13].im + k[6].im;
|
|
|
|
k[7].re = in[14].re - k[7].re;
|
|
|
|
k[7].im = in[14].im + k[7].im;
|
|
|
|
|
|
|
|
/* 15pt start here */
|
|
|
|
t[0].re = y[3].re + y[0].re;
|
|
|
|
t[0].im = y[3].im + y[0].im;
|
|
|
|
t[1].re = y[2].re + y[1].re;
|
|
|
|
t[1].im = y[2].im + y[1].im;
|
|
|
|
t[2].re = y[1].re - y[2].re;
|
|
|
|
t[2].im = y[1].im - y[2].im;
|
|
|
|
t[3].re = y[0].re - y[3].re;
|
|
|
|
t[3].im = y[0].im - y[3].im;
|
|
|
|
|
|
|
|
t[4].re = k[3].re + k[0].re;
|
|
|
|
t[4].im = k[3].im + k[0].im;
|
|
|
|
t[5].re = k[2].re + k[1].re;
|
|
|
|
t[5].im = k[2].im + k[1].im;
|
|
|
|
t[6].re = k[1].re - k[2].re;
|
|
|
|
t[6].im = k[1].im - k[2].im;
|
|
|
|
t[7].re = k[0].re - k[3].re;
|
|
|
|
t[7].im = k[0].im - k[3].im;
|
|
|
|
|
|
|
|
t[ 8].re = k[7].re + k[4].re;
|
|
|
|
t[ 8].im = k[7].im + k[4].im;
|
|
|
|
t[ 9].re = k[6].re + k[5].re;
|
|
|
|
t[ 9].im = k[6].im + k[5].im;
|
|
|
|
t[10].re = k[5].re - k[6].re;
|
|
|
|
t[10].im = k[5].im - k[6].im;
|
|
|
|
t[11].re = k[4].re - k[7].re;
|
|
|
|
t[11].im = k[4].im - k[7].im;
|
|
|
|
|
|
|
|
out[ 0*stride].re = dc[0].re + t[0].re + t[ 1].re;
|
|
|
|
out[ 0*stride].im = dc[0].im + t[0].im + t[ 1].im;
|
|
|
|
out[10*stride].re = dc[1].re + t[4].re + t[ 5].re;
|
|
|
|
out[10*stride].im = dc[1].im + t[4].im + t[ 5].im;
|
|
|
|
out[ 5*stride].re = dc[2].re + t[8].re + t[ 9].re;
|
|
|
|
out[ 5*stride].im = dc[2].im + t[8].im + t[ 9].im;
|
|
|
|
|
|
|
|
r[0].re = t[0].re * tab[0];
|
|
|
|
r[0].im = t[0].im * tab[1];
|
|
|
|
r[1].re = t[1].re * tab[0];
|
|
|
|
r[1].im = t[1].im * tab[1];
|
|
|
|
r[2].re = t[2].re * tab[4];
|
|
|
|
r[2].im = t[2].im * tab[5];
|
|
|
|
r[3].re = t[3].re * tab[4];
|
|
|
|
r[3].im = t[3].im * tab[5];
|
|
|
|
|
|
|
|
r[4].re = t[4].re * tab[0];
|
|
|
|
r[4].im = t[4].im * tab[1];
|
|
|
|
r[5].re = t[5].re * tab[0];
|
|
|
|
r[5].im = t[5].im * tab[1];
|
|
|
|
r[6].re = t[6].re * tab[4];
|
|
|
|
r[6].im = t[6].im * tab[5];
|
|
|
|
r[7].re = t[7].re * tab[4];
|
|
|
|
r[7].im = t[7].im * tab[5];
|
|
|
|
|
|
|
|
r[ 8].re = t[ 8].re * tab[0];
|
|
|
|
r[ 8].im = t[ 8].im * tab[1];
|
|
|
|
r[ 9].re = t[ 9].re * tab[0];
|
|
|
|
r[ 9].im = t[ 9].im * tab[1];
|
|
|
|
r[10].re = t[10].re * tab[4];
|
|
|
|
r[10].im = t[10].im * tab[5];
|
|
|
|
r[11].re = t[11].re * tab[4];
|
|
|
|
r[11].im = t[11].im * tab[5];
|
|
|
|
|
|
|
|
t[0].re = t[0].re * tab[2];
|
|
|
|
t[0].im = t[0].im * tab[3];
|
|
|
|
t[1].re = t[1].re * tab[2];
|
|
|
|
t[1].im = t[1].im * tab[3];
|
|
|
|
t[2].re = t[2].re * tab[6];
|
|
|
|
t[2].im = t[2].im * tab[7];
|
|
|
|
t[3].re = t[3].re * tab[6];
|
|
|
|
t[3].im = t[3].im * tab[7];
|
|
|
|
|
|
|
|
t[4].re = t[4].re * tab[2];
|
|
|
|
t[4].im = t[4].im * tab[3];
|
|
|
|
t[5].re = t[5].re * tab[2];
|
|
|
|
t[5].im = t[5].im * tab[3];
|
|
|
|
t[6].re = t[6].re * tab[6];
|
|
|
|
t[6].im = t[6].im * tab[7];
|
|
|
|
t[7].re = t[7].re * tab[6];
|
|
|
|
t[7].im = t[7].im * tab[7];
|
|
|
|
|
|
|
|
t[ 8].re = t[ 8].re * tab[2];
|
|
|
|
t[ 8].im = t[ 8].im * tab[3];
|
|
|
|
t[ 9].re = t[ 9].re * tab[2];
|
|
|
|
t[ 9].im = t[ 9].im * tab[3];
|
|
|
|
t[10].re = t[10].re * tab[6];
|
|
|
|
t[10].im = t[10].im * tab[7];
|
|
|
|
t[11].re = t[11].re * tab[6];
|
|
|
|
t[11].im = t[11].im * tab[7];
|
|
|
|
|
|
|
|
r[0].re = r[0].re - t[1].re;
|
|
|
|
r[0].im = r[0].im - t[1].im;
|
|
|
|
r[1].re = r[1].re - t[0].re;
|
|
|
|
r[1].im = r[1].im - t[0].im;
|
|
|
|
r[2].re = r[2].re - t[3].re;
|
|
|
|
r[2].im = r[2].im - t[3].im;
|
|
|
|
r[3].re = r[3].re + t[2].re;
|
|
|
|
r[3].im = r[3].im + t[2].im;
|
|
|
|
|
|
|
|
r[4].re = r[4].re - t[5].re;
|
|
|
|
r[4].im = r[4].im - t[5].im;
|
|
|
|
r[5].re = r[5].re - t[4].re;
|
|
|
|
r[5].im = r[5].im - t[4].im;
|
|
|
|
r[6].re = r[6].re - t[7].re;
|
|
|
|
r[6].im = r[6].im - t[7].im;
|
|
|
|
r[7].re = r[7].re + t[6].re;
|
|
|
|
r[7].im = r[7].im + t[6].im;
|
|
|
|
|
|
|
|
r[ 8].re = r[ 8].re - t[ 9].re;
|
|
|
|
r[ 8].im = r[ 8].im - t[ 9].im;
|
|
|
|
r[ 9].re = r[ 9].re - t[ 8].re;
|
|
|
|
r[ 9].im = r[ 9].im - t[ 8].im;
|
|
|
|
r[10].re = r[10].re - t[11].re;
|
|
|
|
r[10].im = r[10].im - t[11].im;
|
|
|
|
r[11].re = r[11].re + t[10].re;
|
|
|
|
r[11].im = r[11].im + t[10].im;
|
|
|
|
|
|
|
|
z0[ 0].re = r[ 3].im + r[ 0].re;
|
|
|
|
z0[ 0].im = r[ 3].re + r[ 0].im;
|
|
|
|
z0[ 1].re = r[ 2].im + r[ 1].re;
|
|
|
|
z0[ 1].im = r[ 2].re + r[ 1].im;
|
|
|
|
z0[ 2].re = r[ 1].im - r[ 2].re;
|
|
|
|
z0[ 2].im = r[ 1].re - r[ 2].im;
|
|
|
|
z0[ 3].re = r[ 0].im - r[ 3].re;
|
|
|
|
z0[ 3].im = r[ 0].re - r[ 3].im;
|
|
|
|
|
|
|
|
z0[ 4].re = r[ 7].im + r[ 4].re;
|
|
|
|
z0[ 4].im = r[ 7].re + r[ 4].im;
|
|
|
|
z0[ 5].re = r[ 6].im + r[ 5].re;
|
|
|
|
z0[ 5].im = r[ 6].re + r[ 5].im;
|
|
|
|
z0[ 6].re = r[ 5].im - r[ 6].re;
|
|
|
|
z0[ 6].im = r[ 5].re - r[ 6].im;
|
|
|
|
z0[ 7].re = r[ 4].im - r[ 7].re;
|
|
|
|
z0[ 7].im = r[ 4].re - r[ 7].im;
|
|
|
|
|
|
|
|
z0[ 8].re = r[11].im + r[ 8].re;
|
|
|
|
z0[ 8].im = r[11].re + r[ 8].im;
|
|
|
|
z0[ 9].re = r[10].im + r[ 9].re;
|
|
|
|
z0[ 9].im = r[10].re + r[ 9].im;
|
|
|
|
z0[10].re = r[ 9].im - r[10].re;
|
|
|
|
z0[10].im = r[ 9].re - r[10].im;
|
|
|
|
z0[11].re = r[ 8].im - r[11].re;
|
|
|
|
z0[11].im = r[ 8].re - r[11].im;
|
|
|
|
|
|
|
|
out[ 6*stride].re = dc[0].re + z0[0].re;
|
|
|
|
out[ 6*stride].im = dc[0].im + z0[3].re;
|
|
|
|
out[12*stride].re = dc[0].re + z0[2].im;
|
|
|
|
out[12*stride].im = dc[0].im + z0[1].im;
|
|
|
|
out[ 3*stride].re = dc[0].re + z0[1].re;
|
|
|
|
out[ 3*stride].im = dc[0].im + z0[2].re;
|
|
|
|
out[ 9*stride].re = dc[0].re + z0[3].im;
|
|
|
|
out[ 9*stride].im = dc[0].im + z0[0].im;
|
|
|
|
|
|
|
|
out[ 1*stride].re = dc[1].re + z0[4].re;
|
|
|
|
out[ 1*stride].im = dc[1].im + z0[7].re;
|
|
|
|
out[ 7*stride].re = dc[1].re + z0[6].im;
|
|
|
|
out[ 7*stride].im = dc[1].im + z0[5].im;
|
|
|
|
out[13*stride].re = dc[1].re + z0[5].re;
|
|
|
|
out[13*stride].im = dc[1].im + z0[6].re;
|
|
|
|
out[ 4*stride].re = dc[1].re + z0[7].im;
|
|
|
|
out[ 4*stride].im = dc[1].im + z0[4].im;
|
|
|
|
|
|
|
|
out[11*stride].re = dc[2].re + z0[8].re;
|
|
|
|
out[11*stride].im = dc[2].im + z0[11].re;
|
|
|
|
out[ 2*stride].re = dc[2].re + z0[10].im;
|
|
|
|
out[ 2*stride].im = dc[2].im + z0[9].im;
|
|
|
|
out[ 8*stride].re = dc[2].re + z0[9].re;
|
|
|
|
out[ 8*stride].im = dc[2].im + z0[10].re;
|
|
|
|
out[14*stride].re = dc[2].re + z0[11].im;
|
|
|
|
out[14*stride].im = dc[2].im + z0[8].im;
|
|
|
|
}
|
|
|
|
```
|