You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

818 lines
26 KiB

/*
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file libavcodec/h264.h
* H.264 / AVC / MPEG4 part10 codec.
* @author Michael Niedermayer <michaelni@gmx.at>
*/
#ifndef AVCODEC_H264_H
#define AVCODEC_H264_H
#include "dsputil.h"
#include "cabac.h"
#include "mpegvideo.h"
#include "h264pred.h"
#define interlaced_dct interlaced_dct_is_a_bad_name
#define mb_intra mb_intra_is_not_initialized_see_mb_type
#define LUMA_DC_BLOCK_INDEX 25
#define CHROMA_DC_BLOCK_INDEX 26
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
#define COEFF_TOKEN_VLC_BITS 8
#define TOTAL_ZEROS_VLC_BITS 9
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
#define RUN_VLC_BITS 3
#define RUN7_VLC_BITS 6
#define MAX_SPS_COUNT 32
#define MAX_PPS_COUNT 256
#define MAX_MMCO_COUNT 66
#define MAX_DELAYED_PIC_COUNT 16
/* Compiling in interlaced support reduces the speed
* of progressive decoding by about 2%. */
#define ALLOW_INTERLACE
#define ALLOW_NOCHROMA
/**
* The maximum number of slices supported by the decoder.
* must be a power of 2
*/
#define MAX_SLICES 16
#ifdef ALLOW_INTERLACE
#define MB_MBAFF h->mb_mbaff
#define MB_FIELD h->mb_field_decoding_flag
#define FRAME_MBAFF h->mb_aff_frame
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
#else
#define MB_MBAFF 0
#define MB_FIELD 0
#define FRAME_MBAFF 0
#define FIELD_PICTURE 0
#undef IS_INTERLACED
#define IS_INTERLACED(mb_type) 0
#endif
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
#ifdef ALLOW_NOCHROMA
#define CHROMA h->sps.chroma_format_idc
#else
#define CHROMA 1
#endif
#define EXTENDED_SAR 255
#define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
#define MB_TYPE_8x8DCT 0x01000000
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
/* NAL unit types */
enum {
NAL_SLICE=1,
NAL_DPA,
NAL_DPB,
NAL_DPC,
NAL_IDR_SLICE,
NAL_SEI,
NAL_SPS,
NAL_PPS,
NAL_AUD,
NAL_END_SEQUENCE,
NAL_END_STREAM,
NAL_FILLER_DATA,
NAL_SPS_EXT,
NAL_AUXILIARY_SLICE=19
};
/**
* SEI message types
*/
typedef enum {
SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
SEI_TYPE_PIC_TIMING = 1, ///< picture timing
SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
} SEI_Type;
/**
* pic_struct in picture timing SEI message
*/
typedef enum {
SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
} SEI_PicStructType;
/**
* Sequence parameter set
*/
typedef struct SPS{
int profile_idc;
int level_idc;
int chroma_format_idc;
int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
int poc_type; ///< pic_order_cnt_type
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
int delta_pic_order_always_zero_flag;
int offset_for_non_ref_pic;
int offset_for_top_to_bottom_field;
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
int ref_frame_count; ///< num_ref_frames
int gaps_in_frame_num_allowed_flag;
int mb_width; ///< pic_width_in_mbs_minus1 + 1
int mb_height; ///< pic_height_in_map_units_minus1 + 1
int frame_mbs_only_flag;
int mb_aff; ///<mb_adaptive_frame_field_flag
int direct_8x8_inference_flag;
int crop; ///< frame_cropping_flag
unsigned int crop_left; ///< frame_cropping_rect_left_offset
unsigned int crop_right; ///< frame_cropping_rect_right_offset
unsigned int crop_top; ///< frame_cropping_rect_top_offset
unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
int vui_parameters_present_flag;
AVRational sar;
int video_signal_type_present_flag;
int full_range;
int colour_description_present_flag;
enum AVColorPrimaries color_primaries;
enum AVColorTransferCharacteristic color_trc;
enum AVColorSpace colorspace;
int timing_info_present_flag;
uint32_t num_units_in_tick;
uint32_t time_scale;
int fixed_frame_rate_flag;
short offset_for_ref_frame[256]; //FIXME dyn aloc?
int bitstream_restriction_flag;
int num_reorder_frames;
int scaling_matrix_present;
uint8_t scaling_matrix4[6][16];
uint8_t scaling_matrix8[2][64];
int nal_hrd_parameters_present_flag;
int vcl_hrd_parameters_present_flag;
int pic_struct_present_flag;
int time_offset_length;
int cpb_cnt; ///< See H.264 E.1.2
int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
int residual_color_transform_flag; ///< residual_colour_transform_flag
}SPS;
/**
* Picture parameter set
*/
typedef struct PPS{
unsigned int sps_id;
int cabac; ///< entropy_coding_mode_flag
int pic_order_present; ///< pic_order_present_flag
int slice_group_count; ///< num_slice_groups_minus1 + 1
int mb_slice_group_map_type;
unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
int weighted_pred; ///< weighted_pred_flag
int weighted_bipred_idc;
int init_qp; ///< pic_init_qp_minus26 + 26
int init_qs; ///< pic_init_qs_minus26 + 26
int chroma_qp_index_offset[2];
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
int constrained_intra_pred; ///< constrained_intra_pred_flag
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
int transform_8x8_mode; ///< transform_8x8_mode_flag
uint8_t scaling_matrix4[6][16];
uint8_t scaling_matrix8[2][64];
uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
int chroma_qp_diff;
}PPS;
/**
* Memory management control operation opcode.
*/
typedef enum MMCOOpcode{
MMCO_END=0,
MMCO_SHORT2UNUSED,
MMCO_LONG2UNUSED,
MMCO_SHORT2LONG,
MMCO_SET_MAX_LONG,
MMCO_RESET,
MMCO_LONG,
} MMCOOpcode;
/**
* Memory management control operation.
*/
typedef struct MMCO{
MMCOOpcode opcode;
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
int long_arg; ///< index, pic_num, or num long refs depending on opcode
} MMCO;
/**
* H264Context
*/
typedef struct H264Context{
MpegEncContext s;
int nal_ref_idc;
int nal_unit_type;
uint8_t *rbsp_buffer[2];
unsigned int rbsp_buffer_size[2];
/**
* Used to parse AVC variant of h264
*/
int is_avc; ///< this flag is != 0 if codec is avc1
int got_avcC; ///< flag used to parse avcC data only once
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
int chroma_qp[2]; //QPc
int prev_mb_skipped;
int next_mb_skipped;
//prediction stuff
int chroma_pred_mode;
int intra16x16_pred_mode;
int top_mb_xy;
int left_mb_xy[2];
int8_t intra4x4_pred_mode_cache[5*8];
int8_t (*intra4x4_pred_mode)[8];
H264PredContext hpc;
unsigned int topleft_samples_available;
unsigned int top_samples_available;
unsigned int topright_samples_available;
unsigned int left_samples_available;
uint8_t (*top_borders[2])[16+2*8];
uint8_t left_border[2*(17+2*9)];
/**
* non zero coeff count cache.
* is 64 if not available.
*/
DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
uint8_t (*non_zero_count)[16];
/**
* Motion vector cache.
*/
DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
#define LIST_NOT_USED -1 //FIXME rename?
#define PART_NOT_AVAILABLE -2
/**
* is 1 if the specific list MV&references are set to 0,0,-2.
*/
int mv_cache_clean[2];
/**
* number of neighbors (top and/or left) that used 8x8 dct
*/
int neighbor_transform_size;
/**
* block_offset[ 0..23] for frame macroblocks
* block_offset[24..47] for field macroblocks
*/
int block_offset[2*(16+8)];
uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
uint32_t *mb2b8_xy;
int b_stride; //FIXME use s->b4_stride
int b8_stride;
int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
int mb_uvlinesize;
int emu_edge_width;
int emu_edge_height;
int halfpel_flag;
int thirdpel_flag;
int unknown_svq3_flag;
int next_slice_index;
SPS *sps_buffers[MAX_SPS_COUNT];
SPS sps; ///< current sps
PPS *pps_buffers[MAX_PPS_COUNT];
/**
* current pps
*/
PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
uint32_t dequant4_buffer[6][52][16];
uint32_t dequant8_buffer[2][52][64];
uint32_t (*dequant4_coeff[6])[16];
uint32_t (*dequant8_coeff[2])[64];
int dequant_coeff_pps; ///< reinit tables when pps changes
int slice_num;
uint16_t *slice_table_base;
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
int slice_type;
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
int slice_type_fixed;
//interlacing specific flags
int mb_aff_frame;
int mb_field_decoding_flag;
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]);
//POC stuff
int poc_lsb;
int poc_msb;
int delta_poc_bottom;
int delta_poc[2];
int frame_num;
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
int frame_num_offset; ///< for POC type 2
int prev_frame_num_offset; ///< for POC type 2
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
/**
* frame_num for frames or 2*frame_num+1 for field pics.
*/
int curr_pic_num;
/**
* max_frame_num or 2*max_frame_num for field pics.
*/
int max_pic_num;
//Weighted pred stuff
int use_weight;
int use_weight_chroma;
int luma_log2_weight_denom;
int chroma_log2_weight_denom;
int luma_weight[2][48];
int luma_offset[2][48];
int chroma_weight[2][48][2];
int chroma_offset[2][48][2];
int implicit_weight[48][48];
//deblock
int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
int slice_alpha_c0_offset;
int slice_beta_offset;
int redundant_pic_count;
int direct_spatial_mv_pred;
int dist_scale_factor[16];
int dist_scale_factor_field[2][32];
int map_col_to_list0[2][16+32];
int map_col_to_list0_field[2][2][16+32];
/**
* num_ref_idx_l0/1_active_minus1 + 1
*/
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
unsigned int list_count;
Picture *short_ref[32];
Picture *long_ref[32];
Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
Reordered version of default_ref_list
according to picture reordering in slice header */
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
int outputed_poc;
/**
* memory management control operations buffer.
*/
MMCO mmco[MAX_MMCO_COUNT];
int mmco_index;
int long_ref_count; ///< number of actual long term references
int short_ref_count; ///< number of actual short term references
//data partitioning
GetBitContext intra_gb;
GetBitContext inter_gb;
GetBitContext *intra_gb_ptr;
GetBitContext *inter_gb_ptr;
DECLARE_ALIGNED_16(DCTELEM, mb[16*24]);
DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
/**
* Cabac
*/
CABACContext cabac;
uint8_t cabac_state[460];
int cabac_init_idc;
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
uint16_t *cbp_table;
int cbp;
int top_cbp;
int left_cbp;
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
uint8_t *chroma_pred_mode_table;
int last_qscale_diff;
int16_t (*mvd_table[2])[2];
DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
uint8_t *direct_table;
uint8_t direct_cache[5*8];
uint8_t zigzag_scan[16];
uint8_t zigzag_scan8x8[64];
uint8_t zigzag_scan8x8_cavlc[64];
uint8_t field_scan[16];
uint8_t field_scan8x8[64];
uint8_t field_scan8x8_cavlc[64];
const uint8_t *zigzag_scan_q0;
const uint8_t *zigzag_scan8x8_q0;
const uint8_t *zigzag_scan8x8_cavlc_q0;
const uint8_t *field_scan_q0;
const uint8_t *field_scan8x8_q0;
const uint8_t *field_scan8x8_cavlc_q0;
int x264_build;
/**
* @defgroup multithreading Members for slice based multithreading
* @{
*/
struct H264Context *thread_context[MAX_THREADS];
/**
* current slice number, used to initalize slice_num of each thread/context
*/
int current_slice;
/**
* Max number of threads / contexts.
* This is equal to AVCodecContext.thread_count unless
* multithreaded decoding is impossible, in which case it is
* reduced to 1.
*/
int max_contexts;
/**
* 1 if the single thread fallback warning has already been
* displayed, 0 otherwise.
*/
int single_decode_warning;
int last_slice_type;
/** @} */
int mb_xy;
uint32_t svq3_watermark_key;
/**
* pic_struct in picture timing SEI message
*/
SEI_PicStructType sei_pic_struct;
/**
* Complement sei_pic_struct
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
* However, soft telecined frames may have these values.
* This is used in an attempt to flag soft telecine progressive.
*/
int prev_interlaced_frame;
/**
* Bit set of clock types for fields/frames in picture timing SEI message.
* For each found ct_type, appropriate bit is set (e.g., bit 1 for
* interlaced).
*/
int sei_ct_type;
/**
* dpb_output_delay in picture timing SEI message, see H.264 C.2.2
*/
int sei_dpb_output_delay;
/**
* cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
*/
int sei_cpb_removal_delay;
/**
* recovery_frame_cnt from SEI message
*
* Set to -1 if no recovery point SEI message found or to number of frames
* before playback synchronizes. Frames having recovery point are key
* frames.
*/
int sei_recovery_frame_cnt;
int is_complex;
int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
// Timestamp stuff
int sei_buffering_period_present; ///< Buffering period SEI flag
int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
}H264Context;
/**
* Decode SEI
*/
int ff_h264_decode_sei(H264Context *h);
/**
* Decode SPS
*/
int ff_h264_decode_seq_parameter_set(H264Context *h);
/**
* Decode PPS
*/
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
/**
* Decodes a network abstraction layer unit.
* @param consumed is the number of bytes used as input
* @param length is the length of the array
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
* @returns decoded bytes, might be src+1 if no escapes
*/
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
/**
* identifies the exact end of the bitstream
* @return the length of the trailing, or 0 if damaged
*/
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
/**
* frees any data that may have been allocated in the H264 context like SPS, PPS etc.
*/
av_cold void ff_h264_free_context(H264Context *h);
/**
* reconstructs bitstream slice_type.
*/
int ff_h264_get_slice_type(H264Context *h);
/**
* allocates tables.
* needs width/height
*/
int ff_h264_alloc_tables(H264Context *h);
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
void ff_h264_write_back_intra_pred_mode(H264Context *h);
void ff_h264_hl_decode_mb(H264Context *h);
int ff_h264_frame_start(H264Context *h);
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
void ff_h264_direct_dist_scale_factor(H264Context * const h);
void ff_h264_direct_ref_list_init(H264Context * const h);
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
/**
* Reset SEI values at the beginning of the frame.
*
* @param h H.264 context.
*/
void ff_h264_reset_sei(H264Context *h);
/*
o-o o-o
/ / /
o-o o-o
,---'
o-o o-o
/ / /
o-o o-o
*/
//This table must be here because scan8[constant] must be known at compiletime
static const uint8_t scan8[16 + 2*4]={
4+1*8, 5+1*8, 4+2*8, 5+2*8,
6+1*8, 7+1*8, 6+2*8, 7+2*8,
4+3*8, 5+3*8, 4+4*8, 5+4*8,
6+3*8, 7+3*8, 6+4*8, 7+4*8,
1+1*8, 2+1*8,
1+2*8, 2+2*8,
1+4*8, 2+4*8,
1+5*8, 2+5*8,
};
static av_always_inline uint32_t pack16to32(int a, int b){
#if HAVE_BIGENDIAN
return (b&0xFFFF) + (a<<16);
#else
return (a&0xFFFF) + (b<<16);
#endif
}
/**
* checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
*/
static inline int check_intra4x4_pred_mode(H264Context *h){
MpegEncContext * const s = &h->s;
static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
int i;
if(!(h->top_samples_available&0x8000)){
for(i=0; i<4; i++){
int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
}
}
}
if((h->left_samples_available&0x8888)!=0x8888){
static const int mask[4]={0x8000,0x2000,0x80,0x20};
for(i=0; i<4; i++){
if(!(h->left_samples_available&mask[i])){
int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
if(status<0){
av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
return -1;
} else if(status){
h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
}
}
}
}
return 0;
} //FIXME cleanup like ff_h264_check_intra_pred_mode
/**
* gets the chroma qp.
*/
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
return h->pps.chroma_qp_table[t][qscale];
}
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
MpegEncContext *s = &h->s;
/* there is no consistent mapping of mvs to neighboring locations that will
* make mbaff happy, so we can't move all this logic to fill_caches */
if(FRAME_MBAFF){
const uint32_t *mb_types = s->current_picture_ptr->mb_type;
const int16_t *mv;
*(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
*C = h->mv_cache[list][scan8[0]-2];
if(!MB_FIELD
&& (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
if(IS_INTERLACED(mb_types[topright_xy])){
#define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
const int x4 = X4, y4 = Y4;\
const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
if(!USES_LIST(mb_type,list))\
return LIST_NOT_USED;\
mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
h->mv_cache[list][scan8[0]-2][0] = mv[0];\
h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
}
}
if(topright_ref == PART_NOT_AVAILABLE
&& ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
&& h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
if(!MB_FIELD
&& IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
}
if(MB_FIELD
&& !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
&& i >= scan8[0]+8){
// left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
}
}
#undef SET_DIAG_MV
}
if(topright_ref != PART_NOT_AVAILABLE){
*C= h->mv_cache[list][ i - 8 + part_width ];
return topright_ref;
}else{
tprintf(s->avctx, "topright MV not available\n");
*C= h->mv_cache[list][ i - 8 - 1 ];
return h->ref_cache[list][ i - 8 - 1 ];
}
}
/**
* gets the predicted MV.
* @param n the block index
* @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
* @param mx the x component of the predicted motion vector
* @param my the y component of the predicted motion vector
*/
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
const int index8= scan8[n];
const int top_ref= h->ref_cache[list][ index8 - 8 ];
const int left_ref= h->ref_cache[list][ index8 - 1 ];
const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
const int16_t * C;
int diagonal_ref, match_count;
assert(part_width==1 || part_width==2 || part_width==4);
/* mv_cache
B . . A T T T T
U . . L . . , .
U . . L . . . .
U . . L . . , .
. . . L . . . .
*/
diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
if(match_count > 1){ //most common
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}else if(match_count==1){
if(left_ref==ref){
*mx= A[0];
*my= A[1];
}else if(top_ref==ref){
*mx= B[0];
*my= B[1];
}else{
*mx= C[0];
*my= C[1];
}
}else{
if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
*mx= A[0];
*my= A[1];
}else{
*mx= mid_pred(A[0], B[0], C[0]);
*my= mid_pred(A[1], B[1], C[1]);
}
}
tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
}
#endif /* AVCODEC_H264_H */