|
|
|
/*
|
|
|
|
* XCB input grabber
|
|
|
|
* Copyright (C) 2014 Luca Barbato <lu_zero@gentoo.org>
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "config.h"
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <xcb/xcb.h>
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_XFIXES
|
|
|
|
#include <xcb/xfixes.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_SHM
|
|
|
|
#include <sys/shm.h>
|
|
|
|
#include <xcb/shm.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_SHAPE
|
|
|
|
#include <xcb/shape.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "libavutil/internal.h"
|
|
|
|
#include "libavutil/mathematics.h"
|
|
|
|
#include "libavutil/opt.h"
|
|
|
|
#include "libavutil/parseutils.h"
|
|
|
|
#include "libavutil/time.h"
|
|
|
|
|
|
|
|
#include "libavformat/avformat.h"
|
|
|
|
#include "libavformat/internal.h"
|
|
|
|
|
|
|
|
typedef struct XCBGrabContext {
|
|
|
|
const AVClass *class;
|
|
|
|
|
lavd/xcbgrab: do not try to create refcounted packets.
The framework will allocate a buffer and copy the data to it,
that takes time. But it avoids constently creating and
destroyng the shared memory segment, and that saves more time.
On my setup,
from ~200 to ~300 FPS at full screen (1920×1200),
from ~1400 to ~3300 at smaller size (640×480),
similar to legacy x11grab and confirmed by others.
Plus, shared memory segments are a scarce resource,
allocating potentially many is a bad idea.
Note: if the application were to drop all references to the
buffer before the next call to av_read_frame(), then passing
the shared memory segment as a refcounted buffer would be
even more efficient, but it is hard to guarantee, and it does
not happen with the ffmpeg command-line tool. Using a small
number of preallocated buffers and resorting to a copy when
the pool is exhausted would be a solution to get the better
of both worlds.
8 years ago
|
|
|
uint8_t *buffer;
|
|
|
|
|
|
|
|
xcb_connection_t *conn;
|
|
|
|
xcb_screen_t *screen;
|
|
|
|
xcb_window_t window;
|
|
|
|
#if CONFIG_LIBXCB_SHM
|
|
|
|
xcb_shm_seg_t segment;
|
|
|
|
#endif
|
|
|
|
int64_t time_frame;
|
|
|
|
AVRational time_base;
|
|
|
|
|
|
|
|
int x, y;
|
|
|
|
int width, height;
|
|
|
|
int frame_size;
|
|
|
|
int bpp;
|
|
|
|
|
|
|
|
int draw_mouse;
|
|
|
|
int follow_mouse;
|
|
|
|
int show_region;
|
|
|
|
int region_border;
|
|
|
|
int centered;
|
|
|
|
|
|
|
|
const char *video_size;
|
|
|
|
const char *framerate;
|
|
|
|
|
|
|
|
int has_shm;
|
|
|
|
} XCBGrabContext;
|
|
|
|
|
|
|
|
#define FOLLOW_CENTER -1
|
|
|
|
|
|
|
|
#define OFFSET(x) offsetof(XCBGrabContext, x)
|
|
|
|
#define D AV_OPT_FLAG_DECODING_PARAM
|
|
|
|
static const AVOption options[] = {
|
|
|
|
{ "x", "Initial x coordinate.", OFFSET(x), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, D },
|
|
|
|
{ "y", "Initial y coordinate.", OFFSET(y), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, D },
|
|
|
|
{ "grab_x", "Initial x coordinate.", OFFSET(x), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, D },
|
|
|
|
{ "grab_y", "Initial y coordinate.", OFFSET(y), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, D },
|
|
|
|
{ "video_size", "A string describing frame size, such as 640x480 or hd720.", OFFSET(video_size), AV_OPT_TYPE_STRING, {.str = "vga" }, 0, 0, D },
|
|
|
|
{ "framerate", "", OFFSET(framerate), AV_OPT_TYPE_STRING, {.str = "ntsc" }, 0, 0, D },
|
|
|
|
{ "draw_mouse", "Draw the mouse pointer.", OFFSET(draw_mouse), AV_OPT_TYPE_INT, { .i64 = 1 }, 0, 1, D },
|
|
|
|
{ "follow_mouse", "Move the grabbing region when the mouse pointer reaches within specified amount of pixels to the edge of region.",
|
|
|
|
OFFSET(follow_mouse), AV_OPT_TYPE_INT, { .i64 = 0 }, FOLLOW_CENTER, INT_MAX, D, "follow_mouse" },
|
|
|
|
{ "centered", "Keep the mouse pointer at the center of grabbing region when following.", 0, AV_OPT_TYPE_CONST, { .i64 = -1 }, INT_MIN, INT_MAX, D, "follow_mouse" },
|
|
|
|
{ "show_region", "Show the grabbing region.", OFFSET(show_region), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, D },
|
|
|
|
{ "region_border", "Set the region border thickness.", OFFSET(region_border), AV_OPT_TYPE_INT, { .i64 = 3 }, 1, 128, D },
|
|
|
|
{ NULL },
|
|
|
|
};
|
|
|
|
|
|
|
|
static const AVClass xcbgrab_class = {
|
|
|
|
.class_name = "xcbgrab indev",
|
|
|
|
.item_name = av_default_item_name,
|
|
|
|
.option = options,
|
|
|
|
.version = LIBAVUTIL_VERSION_INT,
|
|
|
|
.category = AV_CLASS_CATEGORY_DEVICE_VIDEO_INPUT,
|
|
|
|
};
|
|
|
|
|
|
|
|
static int xcbgrab_reposition(AVFormatContext *s,
|
|
|
|
xcb_query_pointer_reply_t *p,
|
|
|
|
xcb_get_geometry_reply_t *geo)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
int x = c->x, y = c->y;
|
|
|
|
int w = c->width, h = c->height, f = c->follow_mouse;
|
|
|
|
int p_x, p_y;
|
|
|
|
|
|
|
|
if (!p || !geo)
|
|
|
|
return AVERROR(EIO);
|
|
|
|
|
|
|
|
p_x = p->win_x;
|
|
|
|
p_y = p->win_y;
|
|
|
|
|
|
|
|
if (f == FOLLOW_CENTER) {
|
|
|
|
x = p_x - w / 2;
|
|
|
|
y = p_y - h / 2;
|
|
|
|
} else {
|
|
|
|
int left = x + f;
|
|
|
|
int right = x + w - f;
|
|
|
|
int top = y + f;
|
|
|
|
int bottom = y + h + f;
|
|
|
|
if (p_x > right) {
|
|
|
|
x += p_x - right;
|
|
|
|
} else if (p_x < left) {
|
|
|
|
x -= left - p_x;
|
|
|
|
}
|
|
|
|
if (p_y > bottom) {
|
|
|
|
y += p_y - bottom;
|
|
|
|
} else if (p_y < top) {
|
|
|
|
y -= top - p_y;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
c->x = FFMIN(FFMAX(0, x), geo->width - w);
|
|
|
|
c->y = FFMIN(FFMAX(0, y), geo->height - h);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xcbgrab_frame(AVFormatContext *s, AVPacket *pkt)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
xcb_get_image_cookie_t iq;
|
|
|
|
xcb_get_image_reply_t *img;
|
|
|
|
xcb_drawable_t drawable = c->screen->root;
|
|
|
|
xcb_generic_error_t *e = NULL;
|
|
|
|
uint8_t *data;
|
|
|
|
int length, ret;
|
|
|
|
|
|
|
|
iq = xcb_get_image(c->conn, XCB_IMAGE_FORMAT_Z_PIXMAP, drawable,
|
|
|
|
c->x, c->y, c->width, c->height, ~0);
|
|
|
|
|
|
|
|
img = xcb_get_image_reply(c->conn, iq, &e);
|
|
|
|
|
|
|
|
if (e) {
|
|
|
|
av_log(s, AV_LOG_ERROR,
|
|
|
|
"Cannot get the image data "
|
|
|
|
"event_error: response_type:%u error_code:%u "
|
|
|
|
"sequence:%u resource_id:%u minor_code:%u major_code:%u.\n",
|
|
|
|
e->response_type, e->error_code,
|
|
|
|
e->sequence, e->resource_id, e->minor_code, e->major_code);
|
|
|
|
return AVERROR(EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!img)
|
|
|
|
return AVERROR(EAGAIN);
|
|
|
|
|
|
|
|
data = xcb_get_image_data(img);
|
|
|
|
length = xcb_get_image_data_length(img);
|
|
|
|
|
|
|
|
ret = av_new_packet(pkt, length);
|
|
|
|
|
|
|
|
if (!ret)
|
|
|
|
memcpy(pkt->data, data, length);
|
|
|
|
|
|
|
|
free(img);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void wait_frame(AVFormatContext *s, AVPacket *pkt)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
int64_t curtime, delay;
|
|
|
|
int64_t frame_time = av_rescale_q(1, c->time_base, AV_TIME_BASE_Q);
|
|
|
|
|
|
|
|
c->time_frame += frame_time;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
curtime = av_gettime();
|
|
|
|
delay = c->time_frame - curtime;
|
|
|
|
if (delay <= 0)
|
|
|
|
break;
|
|
|
|
av_usleep(delay);
|
|
|
|
}
|
|
|
|
|
|
|
|
pkt->pts = curtime;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_SHM
|
|
|
|
static int check_shm(xcb_connection_t *conn)
|
|
|
|
{
|
|
|
|
xcb_shm_query_version_cookie_t cookie = xcb_shm_query_version(conn);
|
|
|
|
xcb_shm_query_version_reply_t *reply;
|
|
|
|
|
|
|
|
reply = xcb_shm_query_version_reply(conn, cookie, NULL);
|
|
|
|
if (reply) {
|
|
|
|
free(reply);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
lavd/xcbgrab: do not try to create refcounted packets.
The framework will allocate a buffer and copy the data to it,
that takes time. But it avoids constently creating and
destroyng the shared memory segment, and that saves more time.
On my setup,
from ~200 to ~300 FPS at full screen (1920×1200),
from ~1400 to ~3300 at smaller size (640×480),
similar to legacy x11grab and confirmed by others.
Plus, shared memory segments are a scarce resource,
allocating potentially many is a bad idea.
Note: if the application were to drop all references to the
buffer before the next call to av_read_frame(), then passing
the shared memory segment as a refcounted buffer would be
even more efficient, but it is hard to guarantee, and it does
not happen with the ffmpeg command-line tool. Using a small
number of preallocated buffers and resorting to a copy when
the pool is exhausted would be a solution to get the better
of both worlds.
8 years ago
|
|
|
static int allocate_shm(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
int size = c->frame_size + AV_INPUT_BUFFER_PADDING_SIZE;
|
lavd/xcbgrab: do not try to create refcounted packets.
The framework will allocate a buffer and copy the data to it,
that takes time. But it avoids constently creating and
destroyng the shared memory segment, and that saves more time.
On my setup,
from ~200 to ~300 FPS at full screen (1920×1200),
from ~1400 to ~3300 at smaller size (640×480),
similar to legacy x11grab and confirmed by others.
Plus, shared memory segments are a scarce resource,
allocating potentially many is a bad idea.
Note: if the application were to drop all references to the
buffer before the next call to av_read_frame(), then passing
the shared memory segment as a refcounted buffer would be
even more efficient, but it is hard to guarantee, and it does
not happen with the ffmpeg command-line tool. Using a small
number of preallocated buffers and resorting to a copy when
the pool is exhausted would be a solution to get the better
of both worlds.
8 years ago
|
|
|
uint8_t *data;
|
|
|
|
int id;
|
|
|
|
|
lavd/xcbgrab: do not try to create refcounted packets.
The framework will allocate a buffer and copy the data to it,
that takes time. But it avoids constently creating and
destroyng the shared memory segment, and that saves more time.
On my setup,
from ~200 to ~300 FPS at full screen (1920×1200),
from ~1400 to ~3300 at smaller size (640×480),
similar to legacy x11grab and confirmed by others.
Plus, shared memory segments are a scarce resource,
allocating potentially many is a bad idea.
Note: if the application were to drop all references to the
buffer before the next call to av_read_frame(), then passing
the shared memory segment as a refcounted buffer would be
even more efficient, but it is hard to guarantee, and it does
not happen with the ffmpeg command-line tool. Using a small
number of preallocated buffers and resorting to a copy when
the pool is exhausted would be a solution to get the better
of both worlds.
8 years ago
|
|
|
if (c->buffer)
|
|
|
|
return 0;
|
|
|
|
id = shmget(IPC_PRIVATE, size, IPC_CREAT | 0777);
|
|
|
|
if (id == -1) {
|
|
|
|
char errbuf[1024];
|
|
|
|
int err = AVERROR(errno);
|
|
|
|
av_strerror(err, errbuf, sizeof(errbuf));
|
|
|
|
av_log(s, AV_LOG_ERROR, "Cannot get %d bytes of shared memory: %s.\n",
|
|
|
|
size, errbuf);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
xcb_shm_attach(c->conn, c->segment, id, 0);
|
lavd/xcbgrab: do not try to create refcounted packets.
The framework will allocate a buffer and copy the data to it,
that takes time. But it avoids constently creating and
destroyng the shared memory segment, and that saves more time.
On my setup,
from ~200 to ~300 FPS at full screen (1920×1200),
from ~1400 to ~3300 at smaller size (640×480),
similar to legacy x11grab and confirmed by others.
Plus, shared memory segments are a scarce resource,
allocating potentially many is a bad idea.
Note: if the application were to drop all references to the
buffer before the next call to av_read_frame(), then passing
the shared memory segment as a refcounted buffer would be
even more efficient, but it is hard to guarantee, and it does
not happen with the ffmpeg command-line tool. Using a small
number of preallocated buffers and resorting to a copy when
the pool is exhausted would be a solution to get the better
of both worlds.
8 years ago
|
|
|
data = shmat(id, NULL, 0);
|
|
|
|
shmctl(id, IPC_RMID, 0);
|
|
|
|
if ((intptr_t)data == -1 || !data)
|
|
|
|
return AVERROR(errno);
|
|
|
|
c->buffer = data;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xcbgrab_frame_shm(AVFormatContext *s, AVPacket *pkt)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
xcb_shm_get_image_cookie_t iq;
|
|
|
|
xcb_shm_get_image_reply_t *img;
|
|
|
|
xcb_drawable_t drawable = c->screen->root;
|
|
|
|
xcb_generic_error_t *e = NULL;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = allocate_shm(s);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
iq = xcb_shm_get_image(c->conn, drawable,
|
|
|
|
c->x, c->y, c->width, c->height, ~0,
|
|
|
|
XCB_IMAGE_FORMAT_Z_PIXMAP, c->segment, 0);
|
|
|
|
img = xcb_shm_get_image_reply(c->conn, iq, &e);
|
|
|
|
|
|
|
|
xcb_flush(c->conn);
|
|
|
|
|
|
|
|
if (e) {
|
|
|
|
av_log(s, AV_LOG_ERROR,
|
|
|
|
"Cannot get the image data "
|
|
|
|
"event_error: response_type:%u error_code:%u "
|
|
|
|
"sequence:%u resource_id:%u minor_code:%u major_code:%u.\n",
|
|
|
|
e->response_type, e->error_code,
|
|
|
|
e->sequence, e->resource_id, e->minor_code, e->major_code);
|
|
|
|
|
|
|
|
return AVERROR(EACCES);
|
|
|
|
}
|
|
|
|
|
|
|
|
free(img);
|
|
|
|
|
lavd/xcbgrab: do not try to create refcounted packets.
The framework will allocate a buffer and copy the data to it,
that takes time. But it avoids constently creating and
destroyng the shared memory segment, and that saves more time.
On my setup,
from ~200 to ~300 FPS at full screen (1920×1200),
from ~1400 to ~3300 at smaller size (640×480),
similar to legacy x11grab and confirmed by others.
Plus, shared memory segments are a scarce resource,
allocating potentially many is a bad idea.
Note: if the application were to drop all references to the
buffer before the next call to av_read_frame(), then passing
the shared memory segment as a refcounted buffer would be
even more efficient, but it is hard to guarantee, and it does
not happen with the ffmpeg command-line tool. Using a small
number of preallocated buffers and resorting to a copy when
the pool is exhausted would be a solution to get the better
of both worlds.
8 years ago
|
|
|
pkt->data = c->buffer;
|
|
|
|
pkt->size = c->frame_size;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_LIBXCB_SHM */
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_XFIXES
|
|
|
|
static int check_xfixes(xcb_connection_t *conn)
|
|
|
|
{
|
|
|
|
xcb_xfixes_query_version_cookie_t cookie;
|
|
|
|
xcb_xfixes_query_version_reply_t *reply;
|
|
|
|
|
|
|
|
cookie = xcb_xfixes_query_version(conn, XCB_XFIXES_MAJOR_VERSION,
|
|
|
|
XCB_XFIXES_MINOR_VERSION);
|
|
|
|
reply = xcb_xfixes_query_version_reply(conn, cookie, NULL);
|
|
|
|
|
|
|
|
if (reply) {
|
|
|
|
free(reply);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define BLEND(target, source, alpha) \
|
|
|
|
(target) + ((source) * (255 - (alpha)) + 255 / 2) / 255
|
|
|
|
|
|
|
|
static void xcbgrab_draw_mouse(AVFormatContext *s, AVPacket *pkt,
|
|
|
|
xcb_query_pointer_reply_t *p,
|
|
|
|
xcb_get_geometry_reply_t *geo)
|
|
|
|
{
|
|
|
|
XCBGrabContext *gr = s->priv_data;
|
|
|
|
uint32_t *cursor;
|
|
|
|
uint8_t *image = pkt->data;
|
|
|
|
int stride = gr->bpp / 8;
|
|
|
|
xcb_xfixes_get_cursor_image_cookie_t cc;
|
|
|
|
xcb_xfixes_get_cursor_image_reply_t *ci;
|
|
|
|
int cx, cy, x, y, w, h, c_off, i_off;
|
|
|
|
|
|
|
|
cc = xcb_xfixes_get_cursor_image(gr->conn);
|
|
|
|
ci = xcb_xfixes_get_cursor_image_reply(gr->conn, cc, NULL);
|
|
|
|
if (!ci)
|
|
|
|
return;
|
|
|
|
|
|
|
|
cursor = xcb_xfixes_get_cursor_image_cursor_image(ci);
|
|
|
|
if (!cursor)
|
|
|
|
return;
|
|
|
|
|
|
|
|
cx = ci->x - ci->xhot;
|
|
|
|
cy = ci->y - ci->yhot;
|
|
|
|
|
|
|
|
x = FFMAX(cx, gr->x);
|
|
|
|
y = FFMAX(cy, gr->y);
|
|
|
|
|
|
|
|
w = FFMIN(cx + ci->width, gr->x + gr->width) - x;
|
|
|
|
h = FFMIN(cy + ci->height, gr->y + gr->height) - y;
|
|
|
|
|
|
|
|
c_off = x - cx;
|
|
|
|
i_off = x - gr->x;
|
|
|
|
|
|
|
|
cursor += (y - cy) * ci->width;
|
|
|
|
image += (y - gr->y) * gr->width * stride;
|
|
|
|
|
|
|
|
for (y = 0; y < h; y++) {
|
|
|
|
cursor += c_off;
|
|
|
|
image += i_off * stride;
|
|
|
|
for (x = 0; x < w; x++, cursor++, image += stride) {
|
|
|
|
int r, g, b, a;
|
|
|
|
|
|
|
|
r = *cursor & 0xff;
|
|
|
|
g = (*cursor >> 8) & 0xff;
|
|
|
|
b = (*cursor >> 16) & 0xff;
|
|
|
|
a = (*cursor >> 24) & 0xff;
|
|
|
|
|
|
|
|
if (!a)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if (a == 255) {
|
|
|
|
image[0] = r;
|
|
|
|
image[1] = g;
|
|
|
|
image[2] = b;
|
|
|
|
} else {
|
|
|
|
image[0] = BLEND(r, image[0], a);
|
|
|
|
image[1] = BLEND(g, image[1], a);
|
|
|
|
image[2] = BLEND(b, image[2], a);
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
cursor += ci->width - w - c_off;
|
|
|
|
image += (gr->width - w - i_off) * stride;
|
|
|
|
}
|
|
|
|
|
|
|
|
free(ci);
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_LIBXCB_XFIXES */
|
|
|
|
|
|
|
|
static void xcbgrab_update_region(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
const uint32_t args[] = { c->x - c->region_border,
|
|
|
|
c->y - c->region_border };
|
|
|
|
|
|
|
|
xcb_configure_window(c->conn,
|
|
|
|
c->window,
|
|
|
|
XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y,
|
|
|
|
args);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xcbgrab_read_packet(AVFormatContext *s, AVPacket *pkt)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
xcb_query_pointer_cookie_t pc;
|
|
|
|
xcb_get_geometry_cookie_t gc;
|
|
|
|
xcb_query_pointer_reply_t *p = NULL;
|
|
|
|
xcb_get_geometry_reply_t *geo = NULL;
|
|
|
|
int ret = 0;
|
|
|
|
|
|
|
|
wait_frame(s, pkt);
|
|
|
|
|
|
|
|
if (c->follow_mouse || c->draw_mouse) {
|
|
|
|
pc = xcb_query_pointer(c->conn, c->screen->root);
|
|
|
|
gc = xcb_get_geometry(c->conn, c->screen->root);
|
|
|
|
p = xcb_query_pointer_reply(c->conn, pc, NULL);
|
|
|
|
geo = xcb_get_geometry_reply(c->conn, gc, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (c->follow_mouse && p->same_screen)
|
|
|
|
xcbgrab_reposition(s, p, geo);
|
|
|
|
|
|
|
|
if (c->show_region)
|
|
|
|
xcbgrab_update_region(s);
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_SHM
|
|
|
|
if (c->has_shm && xcbgrab_frame_shm(s, pkt) < 0)
|
|
|
|
c->has_shm = 0;
|
|
|
|
#endif
|
|
|
|
if (!c->has_shm)
|
|
|
|
ret = xcbgrab_frame(s, pkt);
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_XFIXES
|
|
|
|
if (ret >= 0 && c->draw_mouse && p->same_screen)
|
|
|
|
xcbgrab_draw_mouse(s, pkt, p, geo);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
free(p);
|
|
|
|
free(geo);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static av_cold int xcbgrab_read_close(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
XCBGrabContext *ctx = s->priv_data;
|
|
|
|
|
lavd/xcbgrab: do not try to create refcounted packets.
The framework will allocate a buffer and copy the data to it,
that takes time. But it avoids constently creating and
destroyng the shared memory segment, and that saves more time.
On my setup,
from ~200 to ~300 FPS at full screen (1920×1200),
from ~1400 to ~3300 at smaller size (640×480),
similar to legacy x11grab and confirmed by others.
Plus, shared memory segments are a scarce resource,
allocating potentially many is a bad idea.
Note: if the application were to drop all references to the
buffer before the next call to av_read_frame(), then passing
the shared memory segment as a refcounted buffer would be
even more efficient, but it is hard to guarantee, and it does
not happen with the ffmpeg command-line tool. Using a small
number of preallocated buffers and resorting to a copy when
the pool is exhausted would be a solution to get the better
of both worlds.
8 years ago
|
|
|
#if CONFIG_LIBXCB_SHM
|
|
|
|
if (ctx->buffer) {
|
|
|
|
shmdt(ctx->buffer);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
xcb_disconnect(ctx->conn);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static xcb_screen_t *get_screen(const xcb_setup_t *setup, int screen_num)
|
|
|
|
{
|
|
|
|
xcb_screen_iterator_t it = xcb_setup_roots_iterator(setup);
|
|
|
|
xcb_screen_t *screen = NULL;
|
|
|
|
|
|
|
|
for (; it.rem > 0; xcb_screen_next (&it)) {
|
|
|
|
if (!screen_num) {
|
|
|
|
screen = it.data;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
screen_num--;
|
|
|
|
}
|
|
|
|
|
|
|
|
return screen;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int pixfmt_from_pixmap_format(AVFormatContext *s, int depth,
|
|
|
|
int *pix_fmt)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
const xcb_setup_t *setup = xcb_get_setup(c->conn);
|
|
|
|
const xcb_format_t *fmt = xcb_setup_pixmap_formats(setup);
|
|
|
|
int length = xcb_setup_pixmap_formats_length(setup);
|
|
|
|
|
|
|
|
*pix_fmt = 0;
|
|
|
|
|
|
|
|
while (length--) {
|
|
|
|
if (fmt->depth == depth) {
|
|
|
|
switch (depth) {
|
|
|
|
case 32:
|
|
|
|
if (fmt->bits_per_pixel == 32)
|
|
|
|
*pix_fmt = AV_PIX_FMT_0RGB;
|
|
|
|
break;
|
|
|
|
case 24:
|
|
|
|
if (fmt->bits_per_pixel == 32)
|
|
|
|
*pix_fmt = AV_PIX_FMT_0RGB32;
|
|
|
|
else if (fmt->bits_per_pixel == 24)
|
|
|
|
*pix_fmt = AV_PIX_FMT_RGB24;
|
|
|
|
break;
|
|
|
|
case 16:
|
|
|
|
if (fmt->bits_per_pixel == 16)
|
|
|
|
*pix_fmt = AV_PIX_FMT_RGB565;
|
|
|
|
break;
|
|
|
|
case 15:
|
|
|
|
if (fmt->bits_per_pixel == 16)
|
|
|
|
*pix_fmt = AV_PIX_FMT_RGB555;
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
if (fmt->bits_per_pixel == 8)
|
|
|
|
*pix_fmt = AV_PIX_FMT_RGB8;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*pix_fmt) {
|
|
|
|
c->bpp = fmt->bits_per_pixel;
|
|
|
|
c->frame_size = c->width * c->height * fmt->bits_per_pixel / 8;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
fmt++;
|
|
|
|
}
|
|
|
|
avpriv_report_missing_feature(s, "Mapping this pixmap format");
|
|
|
|
|
|
|
|
return AVERROR_PATCHWELCOME;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int create_stream(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
AVStream *st = avformat_new_stream(s, NULL);
|
|
|
|
xcb_get_geometry_cookie_t gc;
|
|
|
|
xcb_get_geometry_reply_t *geo;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!st)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
ret = av_parse_video_size(&c->width, &c->height, c->video_size);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
ret = av_parse_video_rate(&st->avg_frame_rate, c->framerate);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
avpriv_set_pts_info(st, 64, 1, 1000000);
|
|
|
|
|
|
|
|
gc = xcb_get_geometry(c->conn, c->screen->root);
|
|
|
|
geo = xcb_get_geometry_reply(c->conn, gc, NULL);
|
|
|
|
|
|
|
|
if (c->x + c->width > geo->width ||
|
|
|
|
c->y + c->height > geo->height) {
|
|
|
|
av_log(s, AV_LOG_ERROR,
|
|
|
|
"Capture area %dx%d at position %d.%d "
|
|
|
|
"outside the screen size %dx%d\n",
|
|
|
|
c->width, c->height,
|
|
|
|
c->x, c->y,
|
|
|
|
geo->width, geo->height);
|
|
|
|
return AVERROR(EINVAL);
|
|
|
|
}
|
|
|
|
|
|
|
|
c->time_base = (AVRational){ st->avg_frame_rate.den,
|
|
|
|
st->avg_frame_rate.num };
|
|
|
|
c->time_frame = av_gettime();
|
|
|
|
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
st->codecpar->codec_type = AVMEDIA_TYPE_VIDEO;
|
|
|
|
st->codecpar->codec_id = AV_CODEC_ID_RAWVIDEO;
|
|
|
|
st->codecpar->width = c->width;
|
|
|
|
st->codecpar->height = c->height;
|
|
|
|
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
ret = pixfmt_from_pixmap_format(s, geo->depth, &st->codecpar->format);
|
|
|
|
|
|
|
|
free(geo);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void draw_rectangle(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
xcb_gcontext_t gc = xcb_generate_id(c->conn);
|
|
|
|
uint32_t mask = XCB_GC_FOREGROUND |
|
|
|
|
XCB_GC_BACKGROUND |
|
|
|
|
XCB_GC_LINE_WIDTH |
|
|
|
|
XCB_GC_LINE_STYLE |
|
|
|
|
XCB_GC_FILL_STYLE;
|
|
|
|
uint32_t values[] = { c->screen->black_pixel,
|
|
|
|
c->screen->white_pixel,
|
|
|
|
c->region_border,
|
|
|
|
XCB_LINE_STYLE_DOUBLE_DASH,
|
|
|
|
XCB_FILL_STYLE_SOLID };
|
|
|
|
xcb_rectangle_t r = { 1, 1,
|
|
|
|
c->width + c->region_border * 2 - 3,
|
|
|
|
c->height + c->region_border * 2 - 3 };
|
|
|
|
|
|
|
|
xcb_create_gc(c->conn, gc, c->window, mask, values);
|
|
|
|
|
|
|
|
xcb_poly_rectangle(c->conn, c->window, gc, 1, &r);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void setup_window(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
uint32_t mask = XCB_CW_OVERRIDE_REDIRECT | XCB_CW_EVENT_MASK;
|
|
|
|
uint32_t values[] = { 1,
|
|
|
|
XCB_EVENT_MASK_EXPOSURE |
|
|
|
|
XCB_EVENT_MASK_STRUCTURE_NOTIFY };
|
|
|
|
av_unused xcb_rectangle_t rect = { 0, 0, c->width, c->height };
|
|
|
|
|
|
|
|
c->window = xcb_generate_id(c->conn);
|
|
|
|
|
|
|
|
xcb_create_window(c->conn, XCB_COPY_FROM_PARENT,
|
|
|
|
c->window,
|
|
|
|
c->screen->root,
|
|
|
|
c->x - c->region_border,
|
|
|
|
c->y - c->region_border,
|
|
|
|
c->width + c->region_border * 2,
|
|
|
|
c->height + c->region_border * 2,
|
|
|
|
0,
|
|
|
|
XCB_WINDOW_CLASS_INPUT_OUTPUT,
|
|
|
|
XCB_COPY_FROM_PARENT,
|
|
|
|
mask, values);
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_SHAPE
|
|
|
|
xcb_shape_rectangles(c->conn, XCB_SHAPE_SO_SUBTRACT,
|
|
|
|
XCB_SHAPE_SK_BOUNDING, XCB_CLIP_ORDERING_UNSORTED,
|
|
|
|
c->window,
|
|
|
|
c->region_border, c->region_border,
|
|
|
|
1, &rect);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
xcb_map_window(c->conn, c->window);
|
|
|
|
|
|
|
|
draw_rectangle(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
static av_cold int xcbgrab_read_header(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
XCBGrabContext *c = s->priv_data;
|
|
|
|
int screen_num, ret;
|
|
|
|
const xcb_setup_t *setup;
|
|
|
|
char *display_name = av_strdup(s->filename);
|
|
|
|
|
|
|
|
if (!display_name)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
if (!sscanf(s->filename, "%[^+]+%d,%d", display_name, &c->x, &c->y)) {
|
|
|
|
*display_name = 0;
|
|
|
|
sscanf(s->filename, "+%d,%d", &c->x, &c->y);
|
|
|
|
}
|
|
|
|
|
|
|
|
c->conn = xcb_connect(display_name[0] ? display_name : NULL, &screen_num);
|
|
|
|
av_freep(&display_name);
|
|
|
|
|
|
|
|
if ((ret = xcb_connection_has_error(c->conn))) {
|
|
|
|
av_log(s, AV_LOG_ERROR, "Cannot open display %s, error %d.\n",
|
|
|
|
s->filename[0] ? s->filename : "default", ret);
|
|
|
|
return AVERROR(EIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
setup = xcb_get_setup(c->conn);
|
|
|
|
|
|
|
|
c->screen = get_screen(setup, screen_num);
|
|
|
|
if (!c->screen) {
|
|
|
|
av_log(s, AV_LOG_ERROR, "The screen %d does not exist.\n",
|
|
|
|
screen_num);
|
|
|
|
xcbgrab_read_close(s);
|
|
|
|
return AVERROR(EIO);
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = create_stream(s);
|
|
|
|
|
|
|
|
if (ret < 0) {
|
|
|
|
xcbgrab_read_close(s);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_SHM
|
|
|
|
if ((c->has_shm = check_shm(c->conn)))
|
|
|
|
c->segment = xcb_generate_id(c->conn);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if CONFIG_LIBXCB_XFIXES
|
|
|
|
if (c->draw_mouse) {
|
|
|
|
if (!(c->draw_mouse = check_xfixes(c->conn))) {
|
|
|
|
av_log(s, AV_LOG_WARNING,
|
|
|
|
"XFixes not available, cannot draw the mouse.\n");
|
|
|
|
}
|
|
|
|
if (c->bpp < 24) {
|
|
|
|
avpriv_report_missing_feature(s, "%d bits per pixel screen",
|
|
|
|
c->bpp);
|
|
|
|
c->draw_mouse = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (c->show_region)
|
|
|
|
setup_window(s);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
AVInputFormat ff_xcbgrab_demuxer = {
|
|
|
|
.name = "x11grab",
|
|
|
|
.long_name = NULL_IF_CONFIG_SMALL("X11 screen capture, using XCB"),
|
|
|
|
.priv_data_size = sizeof(XCBGrabContext),
|
|
|
|
.read_header = xcbgrab_read_header,
|
|
|
|
.read_packet = xcbgrab_read_packet,
|
|
|
|
.read_close = xcbgrab_read_close,
|
|
|
|
.flags = AVFMT_NOFILE,
|
|
|
|
.priv_class = &xcbgrab_class,
|
|
|
|
};
|