You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3003 lines
116 KiB

/*
* VC-1 and WMV3 decoder
* Copyright (c) 2011 Mashiat Sarker Shakkhar
* Copyright (c) 2006-2007 Konstantin Shishkov
* Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* VC-1 and WMV3 block decoding routines
*/
#include "avcodec.h"
#include "mpegutils.h"
#include "mpegvideo.h"
#include "mpegvideodec.h"
#include "msmpeg4_vc1_data.h"
#include "unary.h"
#include "vc1.h"
#include "vc1_pred.h"
#include "vc1acdata.h"
#include "vc1data.h"
// offset tables for interlaced picture MVDATA decoding
static const uint8_t offset_table[2][9] = {
{ 0, 1, 2, 4, 8, 16, 32, 64, 128 },
{ 0, 1, 3, 7, 15, 31, 63, 127, 255 },
};
// mapping table for internal block representation
static const int block_map[6] = {0, 2, 1, 3, 4, 5};
/***********************************************************************/
/**
* @name VC-1 Bitplane decoding
* @see 8.7, p56
* @{
*/
static inline void init_block_index(VC1Context *v)
{
MpegEncContext *s = &v->s;
ff_init_block_index(s);
if (v->field_mode && !(v->second_field ^ v->tff)) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
s->dest[0] += s->cur_pic.ptr->f->linesize[0];
s->dest[1] += s->cur_pic.ptr->f->linesize[1];
s->dest[2] += s->cur_pic.ptr->f->linesize[2];
}
}
static inline void update_block_index(MpegEncContext *s)
{
/* VC1 is always 420 except when using AV_CODEC_FLAG_GRAY
* (or a HWAccel). Shall we inline this value? */
ff_update_block_index(s, 8, 0, s->chroma_x_shift);
}
/** @} */ //Bitplane group
static void vc1_put_blocks_clamped(VC1Context *v, int put_signed)
{
MpegEncContext *s = &v->s;
uint8_t *dest;
int block_count = CONFIG_GRAY && (s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 4 : 6;
int fieldtx = 0;
int i;
/* The put pixels loop is one MB row and one MB column behind the decoding
* loop because we can only put pixels when overlap filtering is done. For
* interlaced frame pictures, however, the put pixels loop is only one
* column behind the decoding loop as interlaced frame pictures only need
* horizontal overlap filtering. */
if (!s->first_slice_line && v->fcm != ILACE_FRAME) {
if (s->mb_x) {
for (i = 0; i < block_count; i++) {
if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i] - 1] :
v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i] - 2]) {
dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + ((i & 1) - 2) * 8;
if (put_signed)
s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
i > 3 ? s->uvlinesize : s->linesize);
else
s->idsp.put_pixels_clamped(v->block[v->topleft_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
i > 3 ? s->uvlinesize : s->linesize);
}
}
}
if (s->mb_x == v->end_mb_x - 1) {
for (i = 0; i < block_count; i++) {
if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i]] :
v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i]]) {
dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + (i & 1) * 8;
if (put_signed)
s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
i > 3 ? s->uvlinesize : s->linesize);
else
s->idsp.put_pixels_clamped(v->block[v->top_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
i > 3 ? s->uvlinesize : s->linesize);
}
}
}
}
if (s->mb_y == s->end_mb_y - 1 || v->fcm == ILACE_FRAME) {
if (s->mb_x) {
if (v->fcm == ILACE_FRAME)
fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x - 1];
for (i = 0; i < block_count; i++) {
if (i > 3 ? v->mb_type[0][s->block_index[i] - 1] :
v->mb_type[0][s->block_index[i] - 2]) {
if (fieldtx)
dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + ((i & 1) - 2) * 8;
else
dest = s->dest[0] + (i & 2) * 4 * s->linesize + ((i & 1) - 2) * 8;
if (put_signed)
s->idsp.put_signed_pixels_clamped(v->block[v->left_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] - 8 : dest,
i > 3 ? s->uvlinesize : s->linesize << fieldtx);
else
s->idsp.put_pixels_clamped(v->block[v->left_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] - 8 : dest,
i > 3 ? s->uvlinesize : s->linesize << fieldtx);
}
}
}
if (s->mb_x == v->end_mb_x - 1) {
if (v->fcm == ILACE_FRAME)
fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x];
for (i = 0; i < block_count; i++) {
if (v->mb_type[0][s->block_index[i]]) {
if (fieldtx)
dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + (i & 1) * 8;
else
dest = s->dest[0] + (i & 2) * 4 * s->linesize + (i & 1) * 8;
if (put_signed)
s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] : dest,
i > 3 ? s->uvlinesize : s->linesize << fieldtx);
else
s->idsp.put_pixels_clamped(v->block[v->cur_blk_idx][block_map[i]],
i > 3 ? s->dest[i - 3] : dest,
i > 3 ? s->uvlinesize : s->linesize << fieldtx);
}
}
}
}
}
#define inc_blk_idx(idx) do { \
idx++; \
if (idx >= v->n_allocated_blks) \
idx = 0; \
} while (0)
/***********************************************************************/
/**
* @name VC-1 Block-level functions
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
/**
* @def GET_MQUANT
* @brief Get macroblock-level quantizer scale
*/
#define GET_MQUANT() \
if (v->dquantfrm) { \
int edges = 0; \
if (v->dqprofile == DQPROFILE_ALL_MBS) { \
if (v->dqbilevel) { \
mquant = (get_bits1(gb)) ? -v->altpq : v->pq; \
} else { \
mqdiff = get_bits(gb, 3); \
if (mqdiff != 7) \
mquant = -v->pq - mqdiff; \
else \
mquant = -get_bits(gb, 5); \
} \
} \
if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
edges = 1 << v->dqsbedge; \
else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
edges = (3 << v->dqsbedge) % 15; \
else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
edges = 15; \
if ((edges&1) && !s->mb_x) \
mquant = -v->altpq; \
if ((edges&2) && !s->mb_y) \
mquant = -v->altpq; \
if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
mquant = -v->altpq; \
if ((edges&8) && \
s->mb_y == ((s->mb_height >> v->field_mode) - 1)) \
mquant = -v->altpq; \
if (!mquant || mquant > 31 || mquant < -31) { \
av_log(v->s.avctx, AV_LOG_ERROR, \
"Overriding invalid mquant %d\n", mquant); \
mquant = 1; \
} \
}
/**
* @def GET_MVDATA(_dmv_x, _dmv_y)
* @brief Get MV differentials
* @see MVDATA decoding from 8.3.5.2, p(1)20
* @param _dmv_x Horizontal differential for decoded MV
* @param _dmv_y Vertical differential for decoded MV
*/
#define GET_MVDATA(_dmv_x, _dmv_y) \
index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index], \
VC1_MV_DIFF_VLC_BITS, 2); \
if (index > 36) { \
mb_has_coeffs = 1; \
index -= 37; \
} else \
mb_has_coeffs = 0; \
s->mb_intra = 0; \
if (!index) { \
_dmv_x = _dmv_y = 0; \
} else if (index == 35) { \
_dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
_dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
} else if (index == 36) { \
_dmv_x = 0; \
_dmv_y = 0; \
s->mb_intra = 1; \
} else { \
index1 = index % 6; \
_dmv_x = offset_table[1][index1]; \
val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
if (val > 0) { \
val = get_bits(gb, val); \
sign = 0 - (val & 1); \
_dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
} \
\
index1 = index / 6; \
_dmv_y = offset_table[1][index1]; \
val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
if (val > 0) { \
val = get_bits(gb, val); \
sign = 0 - (val & 1); \
_dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
} \
}
static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
int *dmv_y, int *pred_flag)
{
int index, index1;
int extend_x, extend_y;
GetBitContext *gb = &v->s.gb;
int bits, esc;
int val, sign;
if (v->numref) {
bits = VC1_2REF_MVDATA_VLC_BITS;
esc = 125;
} else {
bits = VC1_1REF_MVDATA_VLC_BITS;
esc = 71;
}
extend_x = v->dmvrange & 1;
extend_y = (v->dmvrange >> 1) & 1;
index = get_vlc2(gb, v->imv_vlc, bits, 3);
if (index == esc) {
*dmv_x = get_bits(gb, v->k_x);
*dmv_y = get_bits(gb, v->k_y);
if (v->numref) {
if (pred_flag)
*pred_flag = *dmv_y & 1;
*dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
}
}
else {
av_assert0(index < esc);
index1 = (index + 1) % 9;
if (index1 != 0) {
val = get_bits(gb, index1 + extend_x);
sign = 0 - (val & 1);
*dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
} else
*dmv_x = 0;
index1 = (index + 1) / 9;
if (index1 > v->numref) {
val = get_bits(gb, (index1 >> v->numref) + extend_y);
sign = 0 - (val & 1);
*dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
} else
*dmv_y = 0;
if (v->numref && pred_flag)
*pred_flag = index1 & 1;
}
}
/** Reconstruct motion vector for B-frame and do motion compensation
*/
static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
int direct, int mode)
{
if (direct) {
ff_vc1_mc_1mv(v, 0);
ff_vc1_interp_mc(v);
return;
}
if (mode == BMV_TYPE_INTERPOLATED) {
ff_vc1_mc_1mv(v, 0);
ff_vc1_interp_mc(v);
return;
}
ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
}
/** Get predicted DC value for I-frames only
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param overlap flag indicating that overlap filtering is used
* @param pq integer part of picture quantizer
* @param[in] n block index in the current MB
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred, scale;
int16_t *dc_val;
static const uint16_t dcpred[32] = {
-1, 1024, 512, 341, 256, 205, 171, 146, 128,
114, 102, 93, 85, 79, 73, 68, 64,
60, 57, 54, 51, 49, 47, 45, 43,
41, 39, 38, 37, 35, 34, 33
};
/* find prediction - wmv3_dc_scale always used here in fact */
if (n < 4) scale = s->y_dc_scale;
else scale = s->c_dc_scale;
wrap = s->block_wrap[n];
dc_val = s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
if (pq < 9 || !overlap) {
/* Set outer values */
if (s->first_slice_line && (n != 2 && n != 3))
b = a = dcpred[scale];
if (s->mb_x == 0 && (n != 1 && n != 3))
b = c = dcpred[scale];
} else {
/* Set outer values */
if (s->first_slice_line && (n != 2 && n != 3))
b = a = 0;
if (s->mb_x == 0 && (n != 1 && n != 3))
b = c = 0;
}
if (abs(a - b) <= abs(b - c)) {
pred = c;
*dir_ptr = 1; // left
} else {
pred = a;
*dir_ptr = 0; // top
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** Get predicted DC value
* prediction dir: left=0, top=1
* @param s MpegEncContext
* @param overlap flag indicating that overlap filtering is used
* @param pq integer part of picture quantizer
* @param[in] n block index in the current MB
* @param a_avail flag indicating top block availability
* @param c_avail flag indicating left block availability
* @param dc_val_ptr Pointer to DC predictor
* @param dir_ptr Prediction direction for use in AC prediction
*/
static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
int a_avail, int c_avail,
int16_t **dc_val_ptr, int *dir_ptr)
{
int a, b, c, wrap, pred;
int16_t *dc_val;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int q1, q2 = 0;
int dqscale_index;
/* scale predictors if needed */
q1 = FFABS(s->cur_pic.qscale_table[mb_pos]);
dqscale_index = s->y_dc_scale_table[q1] - 1;
if (dqscale_index < 0)
return 0;
wrap = s->block_wrap[n];
dc_val = s->dc_val[0] + s->block_index[n];
/* B A
* C X
*/
c = dc_val[ - 1];
b = dc_val[ - 1 - wrap];
a = dc_val[ - wrap];
if (c_avail && (n != 1 && n != 3)) {
q2 = FFABS(s->cur_pic.qscale_table[mb_pos - 1]);
if (q2 && q2 != q1)
c = (int)((unsigned)c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
}
if (a_avail && (n != 2 && n != 3)) {
q2 = FFABS(s->cur_pic.qscale_table[mb_pos - s->mb_stride]);
if (q2 && q2 != q1)
a = (int)((unsigned)a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
}
if (a_avail && c_avail && (n != 3)) {
int off = mb_pos;
if (n != 1)
off--;
if (n != 2)
off -= s->mb_stride;
q2 = FFABS(s->cur_pic.qscale_table[off]);
if (q2 && q2 != q1)
b = (int)((unsigned)b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
}
if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
pred = c;
*dir_ptr = 1; // left
} else if (a_avail) {
pred = a;
*dir_ptr = 0; // top
} else {
pred = 0;
*dir_ptr = 1; // left
}
/* update predictor */
*dc_val_ptr = &dc_val[0];
return pred;
}
/** @} */ // Block group
/**
* @name VC1 Macroblock-level functions in Simple/Main Profiles
* @see 7.1.4, p91 and 8.1.1.7, p(1)04
* @{
*/
static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
uint8_t **coded_block_ptr)
{
int xy, wrap, pred, a, b, c;
xy = s->block_index[n];
wrap = s->b8_stride;
/* B C
* A X
*/
a = s->coded_block[xy - 1 ];
b = s->coded_block[xy - 1 - wrap];
c = s->coded_block[xy - wrap];
if (b == c) {
pred = a;
} else {
pred = c;
}
/* store value */
*coded_block_ptr = &s->coded_block[xy];
return pred;
}
/**
* Decode one AC coefficient
* @param v The VC1 context
* @param last Last coefficient
* @param skip How much zero coefficients to skip
* @param value Decoded AC coefficient value
* @param codingset set of VLC to decode data
* @see 8.1.3.4
*/
static int vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
int *value, int codingset)
{
GetBitContext *gb = &v->s.gb;
int index, run, level, lst, sign;
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset], AC_VLC_BITS, 3);
if (index < 0)
return index;
if (index != ff_vc1_ac_sizes[codingset] - 1) {
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
sign = get_bits1(gb);
} else {
int escape = decode210(gb);
if (escape != 2) {
index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset], AC_VLC_BITS, 3);
if (index >= ff_vc1_ac_sizes[codingset] - 1U)
return AVERROR_INVALIDDATA;
run = vc1_index_decode_table[codingset][index][0];
level = vc1_index_decode_table[codingset][index][1];
lst = index >= vc1_last_decode_table[codingset];
if (escape == 0) {
if (lst)
level += vc1_last_delta_level_table[codingset][run];
else
level += vc1_delta_level_table[codingset][run];
} else {
if (lst)
run += vc1_last_delta_run_table[codingset][level] + 1;
else
run += vc1_delta_run_table[codingset][level] + 1;
}
sign = get_bits1(gb);
} else {
lst = get_bits1(gb);
if (v->s.esc3_level_length == 0) {
if (v->pq < 8 || v->dquantfrm) { // table 59
v->s.esc3_level_length = get_bits(gb, 3);
if (!v->s.esc3_level_length)
v->s.esc3_level_length = get_bits(gb, 2) + 8;
} else { // table 60
v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
}
v->s.esc3_run_length = 3 + get_bits(gb, 2);
}
run = get_bits(gb, v->s.esc3_run_length);
sign = get_bits1(gb);
level = get_bits(gb, v->s.esc3_level_length);
}
}
*last = lst;
*skip = run;
*value = (level ^ -sign) + sign;
return 0;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock index
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
*/
static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
int coded, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val;
int16_t *ac_val, *ac_val2;
int dcdiff, scale;
/* Get DC differential */
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_vlc[s->dc_table_index][n >= 4],
MSMP4_DC_VLC_BITS, 3);
if (dcdiff) {
const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
if (dcdiff == 119 /* ESC index value */) {
dcdiff = get_bits(gb, 8 + m);
} else {
if (m)
dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4)
scale = s->y_dc_scale;
else
scale = s->c_dc_scale;
block[0] = dcdiff * scale;
ac_val = s->ac_val[0][s->block_index[n]];
ac_val2 = ac_val;
if (dc_pred_dir) // left
ac_val -= 16;
else // top
ac_val -= 16 * s->block_wrap[n];
scale = v->pq * 2 + v->halfpq;
//AC Decoding
i = !!coded;
if (coded) {
int last = 0, skip, value;
const uint8_t *zz_table;
int k;
if (v->s.ac_pred) {
if (!dc_pred_dir)
zz_table = v->zz_8x8[2];
else
zz_table = v->zz_8x8[3];
} else
zz_table = v->zz_8x8[1];
while (!last) {
int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
if (ret < 0)
return ret;
i += skip;
if (i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if (s->ac_pred) {
int sh;
if (dc_pred_dir) { // left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
}
for (k = 1; k < 8; k++)
block[k << sh] += ac_val[k];
}
/* save AC coeffs for further prediction */
for (k = 1; k < 8; k++) {
ac_val2[k] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for (k = 1; k < 64; k++)
if (block[k]) {
block[k] *= scale;
if (!v->pquantizer)
block[k] += (block[k] < 0) ? -v->pq : v->pq;
}
} else {
int k;
memset(ac_val2, 0, 16 * 2);
/* apply AC prediction if needed */
if (s->ac_pred) {
int sh;
if (dc_pred_dir) { //left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
ac_val2 += 8;
}
memcpy(ac_val2, ac_val, 8 * 2);
for (k = 1; k < 8; k++) {
block[k << sh] = ac_val[k] * scale;
if (!v->pquantizer && block[k << sh])
block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
}
}
}
if (s->ac_pred) i = 63;
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in intra frames - should be faster than decode_intra_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock number
* @param coded are AC coeffs present or not
* @param codingset set of VLC to decode data
* @param mquant quantizer value for this macroblock
*/
static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
int coded, int codingset, int mquant)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val = NULL;
int16_t *ac_val, *ac_val2;
int dcdiff;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int quant = FFABS(mquant);
/* Get DC differential */
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_vlc[s->dc_table_index][n >= 4],
MSMP4_DC_VLC_BITS, 3);
if (dcdiff) {
const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
if (dcdiff == 119 /* ESC index value */) {
dcdiff = get_bits(gb, 8 + m);
} else {
if (m)
dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4)
scale = s->y_dc_scale;
else
scale = s->c_dc_scale;
block[0] = dcdiff * scale;
/* check if AC is needed at all */
if (!a_avail && !c_avail)
use_pred = 0;
scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
ac_val = s->ac_val[0][s->block_index[n]];
ac_val2 = ac_val;
if (dc_pred_dir) // left
ac_val -= 16;
else // top
ac_val -= 16 * s->block_wrap[n];
q1 = s->cur_pic.qscale_table[mb_pos];
if (n == 3)
q2 = q1;
else if (dc_pred_dir) {
if (n == 1)
q2 = q1;
else if (c_avail && mb_pos)
q2 = s->cur_pic.qscale_table[mb_pos - 1];
} else {
if (n == 2)
q2 = q1;
else if (a_avail && mb_pos >= s->mb_stride)
q2 = s->cur_pic.qscale_table[mb_pos - s->mb_stride];
}
//AC Decoding
i = 1;
if (coded) {
int last = 0, skip, value;
const uint8_t *zz_table;
int k;
if (v->s.ac_pred) {
if (!use_pred && v->fcm == ILACE_FRAME) {
zz_table = v->zzi_8x8;
} else {
if (!dc_pred_dir) // top
zz_table = v->zz_8x8[2];
else // left
zz_table = v->zz_8x8[3];
}
} else {
if (v->fcm != ILACE_FRAME)
zz_table = v->zz_8x8[1];
else
zz_table = v->zzi_8x8;
}
while (!last) {
int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
if (ret < 0)
return ret;
i += skip;
if (i > 63)
break;
block[zz_table[i++]] = value;
}
/* apply AC prediction if needed */
if (use_pred) {
int sh;
if (dc_pred_dir) { // left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
}
/* scale predictors if needed*/
q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
if (q2)
q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
if (q2 && q1 != q2) {
for (k = 1; k < 8; k++)
block[k << sh] += (int)(ac_val[k] * (unsigned)q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else {
for (k = 1; k < 8; k++)
block[k << sh] += ac_val[k];
}
}
/* save AC coeffs for further prediction */
for (k = 1; k < 8; k++) {
ac_val2[k ] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for (k = 1; k < 64; k++)
if (block[k]) {
block[k] *= scale;
if (!v->pquantizer)
block[k] += (block[k] < 0) ? -quant : quant;
}
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
/* apply AC prediction if needed */
if (use_pred) {
int sh;
if (dc_pred_dir) { // left
sh = v->left_blk_sh;
} else { // top
sh = v->top_blk_sh;
ac_val += 8;
ac_val2 += 8;
}
memcpy(ac_val2, ac_val, 8 * 2);
q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
if (q2)
q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
if (q2 && q1 != q2) {
for (k = 1; k < 8; k++)
ac_val2[k] = (int)(ac_val2[k] * q2 * (unsigned)ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
for (k = 1; k < 8; k++) {
block[k << sh] = ac_val2[k] * scale;
if (!v->pquantizer && block[k << sh])
block[k << sh] += (block[k << sh] < 0) ? -quant : quant;
}
}
}
if (use_pred) i = 63;
s->block_last_index[n] = i;
return 0;
}
/** Decode intra block in inter frames - more generic version than vc1_decode_i_block
* @param v VC1Context
* @param block block to decode
* @param[in] n subblock index
* @param coded are AC coeffs present or not
* @param mquant block quantizer
* @param codingset set of VLC to decode data
*/
static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
int coded, int mquant, int codingset)
{
GetBitContext *gb = &v->s.gb;
MpegEncContext *s = &v->s;
int dc_pred_dir = 0; /* Direction of the DC prediction used */
int i;
int16_t *dc_val = NULL;
int16_t *ac_val, *ac_val2;
int dcdiff;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int a_avail = v->a_avail, c_avail = v->c_avail;
int use_pred = s->ac_pred;
int scale;
int q1, q2 = 0;
int quant = FFABS(mquant);
s->bdsp.clear_block(block);
/* XXX: Guard against dumb values of mquant */
quant = av_clip_uintp2(quant, 5);
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[quant];
s->c_dc_scale = s->c_dc_scale_table[quant];
/* Get DC differential */
dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_vlc[s->dc_table_index][n >= 4],
MSMP4_DC_VLC_BITS, 3);
if (dcdiff) {
const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
if (dcdiff == 119 /* ESC index value */) {
dcdiff = get_bits(gb, 8 + m);
} else {
if (m)
dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
}
if (get_bits1(gb))
dcdiff = -dcdiff;
}
/* Prediction */
dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
*dc_val = dcdiff;
/* Store the quantized DC coeff, used for prediction */
if (n < 4) {
block[0] = dcdiff * s->y_dc_scale;
} else {
block[0] = dcdiff * s->c_dc_scale;
}
//AC Decoding
i = 1;
/* check if AC is needed at all and adjust direction if needed */
if (!a_avail) dc_pred_dir = 1;
if (!c_avail) dc_pred_dir = 0;
if (!a_avail && !c_avail) use_pred = 0;
ac_val = s->ac_val[0][s->block_index[n]];
ac_val2 = ac_val;
scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
if (dc_pred_dir) //left
ac_val -= 16;
else //top
ac_val -= 16 * s->block_wrap[n];
q1 = s->cur_pic.qscale_table[mb_pos];
if (dc_pred_dir && c_avail && mb_pos)
q2 = s->cur_pic.qscale_table[mb_pos - 1];
if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
q2 = s->cur_pic.qscale_table[mb_pos - s->mb_stride];
if (dc_pred_dir && n == 1)
q2 = q1;
if (!dc_pred_dir && n == 2)
q2 = q1;
if (n == 3) q2 = q1;
if (coded) {
int last = 0, skip, value;
int k;
while (!last) {
int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
if (ret < 0)
return ret;
i += skip;
if (i > 63)
break;
if (v->fcm == PROGRESSIVE)
block[v->zz_8x8[0][i++]] = value;
else {
if (use_pred && (v->fcm == ILACE_FRAME)) {
if (!dc_pred_dir) // top
block[v->zz_8x8[2][i++]] = value;
else // left
block[v->zz_8x8[3][i++]] = value;
} else {
block[v->zzi_8x8[i++]] = value;
}
}
}
/* apply AC prediction if needed */
if (use_pred) {
/* scale predictors if needed*/
q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
if (q2)
q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
if (q2 && q1 != q2) {
if (dc_pred_dir) { // left
for (k = 1; k < 8; k++)
block[k << v->left_blk_sh] += (int)(ac_val[k] * q2 * (unsigned)ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
} else { //top
for (k = 1; k < 8; k++)
block[k << v->top_blk_sh] += (int)(ac_val[k + 8] * q2 * (unsigned)ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
} else {
if (dc_pred_dir) { // left
for (k = 1; k < 8; k++)
block[k << v->left_blk_sh] += ac_val[k];
} else { // top
for (k = 1; k < 8; k++)
block[k << v->top_blk_sh] += ac_val[k + 8];
}
}
}
/* save AC coeffs for further prediction */
for (k = 1; k < 8; k++) {
ac_val2[k ] = block[k << v->left_blk_sh];
ac_val2[k + 8] = block[k << v->top_blk_sh];
}
/* scale AC coeffs */
for (k = 1; k < 64; k++)
if (block[k]) {
block[k] *= scale;
if (!v->pquantizer)
block[k] += (block[k] < 0) ? -quant : quant;
}
if (use_pred) i = 63;
} else { // no AC coeffs
int k;
memset(ac_val2, 0, 16 * 2);
if (dc_pred_dir) { // left
if (use_pred) {
memcpy(ac_val2, ac_val, 8 * 2);
q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
if (q2)
q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
if (q2 && q1 != q2) {
for (k = 1; k < 8; k++)
ac_val2[k] = (int)(ac_val2[k] * (unsigned)q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
} else { // top
if (use_pred) {
memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
if (q1 < 1)
return AVERROR_INVALIDDATA;
if (q2)
q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
if (q2 && q1 != q2) {
for (k = 1; k < 8; k++)
ac_val2[k + 8] = (int)(ac_val2[k + 8] * (unsigned)q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
}
}
}
/* apply AC prediction if needed */
if (use_pred) {
if (dc_pred_dir) { // left
for (k = 1; k < 8; k++) {
block[k << v->left_blk_sh] = ac_val2[k] * scale;
if (!v->pquantizer && block[k << v->left_blk_sh])
block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -quant : quant;
}
} else { // top
for (k = 1; k < 8; k++) {
block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
if (!v->pquantizer && block[k << v->top_blk_sh])
block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -quant : quant;
}
}
i = 63;
}
}
s->block_last_index[n] = i;
return 0;
}
/** Decode P block
*/
static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
int mquant, int ttmb, int first_block,
uint8_t *dst, int linesize, int skip_block,
int *ttmb_out)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int subblkpat = 0;
int scale, off, idx, last, skip, value;
int ttblk = ttmb & 7;
int pat = 0;
int quant = FFABS(mquant);
s->bdsp.clear_block(block);
if (ttmb == -1) {
ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index], VC1_TTBLK_VLC_BITS, 1)];
}
if (ttblk == TT_4X4) {
subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index], VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
}
if ((ttblk != TT_8X8 && ttblk != TT_4X4)
&& ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
|| (!v->res_rtm_flag && !first_block))) {
subblkpat = decode012(gb);
if (subblkpat)
subblkpat ^= 3; // swap decoded pattern bits
if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
ttblk = TT_8X4;
if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
ttblk = TT_4X8;
}
scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
// convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
subblkpat = 2 - (ttblk == TT_8X4_TOP);
ttblk = TT_8X4;
}
if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
subblkpat = 2 - (ttblk == TT_4X8_LEFT);
ttblk = TT_4X8;
}
switch (ttblk) {
case TT_8X8:
pat = 0xF;
i = 0;
last = 0;
while (!last) {
int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
if (ret < 0)
return ret;
i += skip;
if (i > 63)
break;
if (!v->fcm)
idx = v->zz_8x8[0][i++];
else
idx = v->zzi_8x8[i++];
block[idx] = value * scale;
if (!v->pquantizer)
block[idx] += (block[idx] < 0) ? -quant : quant;
}
if (!skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
else {
v->vc1dsp.vc1_inv_trans_8x8(block);
s->idsp.add_pixels_clamped(block, dst, linesize);
}
}
break;
case TT_4X4:
pat = ~subblkpat & 0xF;
for (j = 0; j < 4; j++) {
last = subblkpat & (1 << (3 - j));
i = 0;
off = (j & 1) * 4 + (j & 2) * 16;
while (!last) {
int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
if (ret < 0)
return ret;
i += skip;
if (i > 15)
break;
if (!v->fcm)
idx = ff_vc1_simple_progressive_4x4_zz[i++];
else
idx = ff_vc1_adv_interlaced_4x4_zz[i++];
block[idx + off] = value * scale;
if (!v->pquantizer)
block[idx + off] += (block[idx + off] < 0) ? -quant : quant;
}
if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
}
}
break;
case TT_8X4:
pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
for (j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 32;
while (!last) {
int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
if (ret < 0)
return ret;
i += skip;
if (i > 31)
break;
if (!v->fcm)
idx = v->zz_8x4[i++] + off;
else
idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
block[idx] = value * scale;
if (!v->pquantizer)
block[idx] += (block[idx] < 0) ? -quant : quant;
}
if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
}
}
break;
case TT_4X8:
pat = ~(subblkpat * 5) & 0xF;
for (j = 0; j < 2; j++) {
last = subblkpat & (1 << (1 - j));
i = 0;
off = j * 4;
while (!last) {
int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
if (ret < 0)
return ret;
i += skip;
if (i > 31)
break;
if (!v->fcm)
idx = v->zz_4x8[i++] + off;
else
idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
block[idx] = value * scale;
if (!v->pquantizer)
block[idx] += (block[idx] < 0) ? -quant : quant;
}
if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
if (i == 1)
v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
else
v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
}
}
break;
}
if (ttmb_out)
*ttmb_out |= ttblk << (n * 4);
return pat;
}
/** @} */ // Macroblock group
static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
/** Decode one P-frame MB
*/
static int vc1_decode_p_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int index, index1; /* LUT indexes */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv;
int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
mquant = v->pq; /* lossy initialization */
if (v->mv_type_is_raw)
fourmv = get_bits1(gb);
else
fourmv = v->mv_type_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
if (!fourmv) { /* 1MV mode */
if (!skipped) {
GET_MVDATA(dmv_x, dmv_y);
if (s->mb_intra) {
s->cur_pic.motion_val[1][s->block_index[0]][0] = 0;
s->cur_pic.motion_val[1][s->block_index[0]][1] = 0;
}
s->cur_pic.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
/* FIXME Set DC val for inter block ? */
if (s->mb_intra && !mb_has_coeffs) {
GET_MQUANT();
s->ac_pred = get_bits1(gb);
cbp = 0;
} else if (mb_has_coeffs) {
if (s->mb_intra)
s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
} else {
mquant = v->pq;
cbp = 0;
}
s->cur_pic.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index],
VC1_TTMB_VLC_BITS, 2);
if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
dst_idx = 0;
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
v->block[v->cur_blk_idx][block_map[i]][j] *= 2;
block_cbp |= 0xF << (i << 2);
block_intra |= 1 << i;
} else if (val) {
pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb, first_block,
s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
if (pat < 0)
return pat;
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
} else { // skipped
s->mb_intra = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->cur_pic.mb_type[mb_pos] = MB_TYPE_SKIP;
s->cur_pic.qscale_table[mb_pos] = 0;
ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
ff_vc1_mc_1mv(v, 0);
}
} else { // 4MV mode
if (!skipped /* unskipped MB */) {
int intra_count = 0, coded_inter = 0;
int is_intra[6], is_coded[6];
/* Get CBPCY */
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
for (i = 0; i < 6; i++) {
val = ((cbp >> (5 - i)) & 1);
s->dc_val[0][s->block_index[i]] = 0;
s->mb_intra = 0;
if (i < 4) {
dmv_x = dmv_y = 0;
s->mb_intra = 0;
mb_has_coeffs = 0;
if (val) {
GET_MVDATA(dmv_x, dmv_y);
}
ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
if (!s->mb_intra)
ff_vc1_mc_4mv_luma(v, i, 0, 0);
intra_count += s->mb_intra;
is_intra[i] = s->mb_intra;
is_coded[i] = mb_has_coeffs;
}
if (i & 4) {
is_intra[i] = (intra_count >= 3);
is_coded[i] = val;
}
if (i == 4)
ff_vc1_mc_4mv_chroma(v, 0);
v->mb_type[0][s->block_index[i]] = is_intra[i];
if (!coded_inter)
coded_inter = !is_intra[i] & is_coded[i];
}
// if there are no coded blocks then don't do anything more
dst_idx = 0;
if (!intra_count && !coded_inter)
goto end;
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
/* test if block is intra and has pred */
{
int intrapred = 0;
for (i = 0; i < 6; i++)
if (is_intra[i]) {
if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
|| ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
intrapred = 1;
break;
}
}
if (intrapred)
s->ac_pred = get_bits1(gb);
else
s->ac_pred = 0;
}
if (!v->ttmbf && coded_inter)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index], VC1_TTMB_VLC_BITS, 2);
for (i = 0; i < 6; i++) {
dst_idx += i >> 2;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->mb_intra = is_intra[i];
if (is_intra[i]) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, is_coded[i], mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
v->block[v->cur_blk_idx][block_map[i]][j] *= 2;
block_cbp |= 0xF << (i << 2);
block_intra |= 1 << i;
} else if (is_coded[i]) {
pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
&block_tt);
if (pat < 0)
return pat;
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
} else { // skipped MB
s->mb_intra = 0;
s->cur_pic.qscale_table[mb_pos] = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
for (i = 0; i < 4; i++) {
ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
ff_vc1_mc_4mv_luma(v, i, 0, 0);
}
ff_vc1_mc_4mv_chroma(v, 0);
s->cur_pic.qscale_table[mb_pos] = 0;
}
}
end:
if (v->overlap && v->pq >= 9)
ff_vc1_p_overlap_filter(v);
vc1_put_blocks_clamped(v, 1);
v->cbp[s->mb_x] = block_cbp;
v->ttblk[s->mb_x] = block_tt;
v->is_intra[s->mb_x] = block_intra;
return 0;
}
/* Decode one macroblock in an interlaced frame p picture */
static int vc1_decode_p_mb_intfr(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int val; /* temp value */
int first_block = 1;
int dst_idx, off;
int skipped, fourmv = 0, twomv = 0;
int block_cbp = 0, pat, block_tt = 0;
int idx_mbmode = 0, mvbp;
int fieldtx;
mquant = v->pq; /* Lossy initialization */
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
if (!skipped) {
if (v->fourmvswitch)
idx_mbmode = get_vlc2(gb, v->mbmode_vlc, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
else
idx_mbmode = get_vlc2(gb, v->mbmode_vlc, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
/* store the motion vector type in a flag (useful later) */
case MV_PMODE_INTFR_4MV:
fourmv = 1;
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
break;
case MV_PMODE_INTFR_4MV_FIELD:
fourmv = 1;
v->blk_mv_type[s->block_index[0]] = 1;
v->blk_mv_type[s->block_index[1]] = 1;
v->blk_mv_type[s->block_index[2]] = 1;
v->blk_mv_type[s->block_index[3]] = 1;
break;
case MV_PMODE_INTFR_2MV_FIELD:
twomv = 1;
v->blk_mv_type[s->block_index[0]] = 1;
v->blk_mv_type[s->block_index[1]] = 1;
v->blk_mv_type[s->block_index[2]] = 1;
v->blk_mv_type[s->block_index[3]] = 1;
break;
case MV_PMODE_INTFR_1MV:
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
break;
}
if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
for (i = 0; i < 4; i++) {
s->cur_pic.motion_val[1][s->block_index[i]][0] = 0;
s->cur_pic.motion_val[1][s->block_index[i]][1] = 0;
}
v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
s->mb_intra = 1;
s->cur_pic.mb_type[mb_pos] = MB_TYPE_INTRA;
fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
mb_has_coeffs = get_bits1(gb);
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same (not sure if necessary here) */
s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
dst_idx = 0;
for (i = 0; i < 6; i++) {
v->a_avail = v->c_avail = 0;
v->mb_type[0][s->block_index[i]] = 1;
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
block_cbp |= 0xf << (i << 2);
}
} else { // inter MB
mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
v->twomvbp = get_vlc2(gb, v->twomvbp_vlc, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
} else {
if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
|| (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
}
}
s->mb_intra = v->is_intra[s->mb_x] = 0;
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = 0;
fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
/* for all motion vector read MVDATA and motion compensate each block */
dst_idx = 0;
if (fourmv) {
mvbp = v->fourmvbp;
for (i = 0; i < 4; i++) {
dmv_x = dmv_y = 0;
if (mvbp & (8 >> i))
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, 0);
ff_vc1_mc_4mv_luma(v, i, 0, 0);
}
ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
} else if (twomv) {
mvbp = v->twomvbp;
dmv_x = dmv_y = 0;
if (mvbp & 2) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
}
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, 0);
ff_vc1_mc_4mv_luma(v, 0, 0, 0);
ff_vc1_mc_4mv_luma(v, 1, 0, 0);
dmv_x = dmv_y = 0;
if (mvbp & 1) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
}
ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, 0);
ff_vc1_mc_4mv_luma(v, 2, 0, 0);
ff_vc1_mc_4mv_luma(v, 3, 0, 0);
ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
} else {
mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
dmv_x = dmv_y = 0;
if (mvbp) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
}
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, 0);
ff_vc1_mc_1mv(v, 0);
}
if (cbp)
GET_MQUANT(); // p. 227
s->cur_pic.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && cbp)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index], VC1_TTMB_VLC_BITS, 2);
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (!fieldtx)
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
else
off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
if (val) {
pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
if (pat < 0)
return pat;
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
}
} else { // skipped
s->mb_intra = v->is_intra[s->mb_x] = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->cur_pic.mb_type[mb_pos] = MB_TYPE_SKIP;
s->cur_pic.qscale_table[mb_pos] = 0;
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, 0);
ff_vc1_mc_1mv(v, 0);
v->fieldtx_plane[mb_pos] = 0;
}
if (v->overlap && v->pq >= 9)
ff_vc1_p_overlap_filter(v);
vc1_put_blocks_clamped(v, 1);
v->cbp[s->mb_x] = block_cbp;
v->ttblk[s->mb_x] = block_tt;
return 0;
}
static int vc1_decode_p_mb_intfi(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int val; /* temp values */
int first_block = 1;
int dst_idx, off;
int pred_flag = 0;
int block_cbp = 0, pat, block_tt = 0;
int idx_mbmode = 0;
mquant = v->pq; /* Lossy initialization */
idx_mbmode = get_vlc2(gb, v->mbmode_vlc, VC1_IF_MBMODE_VLC_BITS, 2);
if (idx_mbmode <= 1) { // intra MB
v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
s->mb_intra = 1;
s->cur_pic.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
s->cur_pic.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
s->cur_pic.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same (not sure if necessary here) */
s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
mb_has_coeffs = idx_mbmode & 1;
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_ICBPCY_VLC_BITS, 2);
dst_idx = 0;
for (i = 0; i < 6; i++) {
v->a_avail = v->c_avail = 0;
v->mb_type[0][s->block_index[i]] = 1;
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
block_cbp |= 0xf << (i << 2);
}
} else {
s->mb_intra = v->is_intra[s->mb_x] = 0;
s->cur_pic.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = 0;
if (idx_mbmode <= 5) { // 1-MV
dmv_x = dmv_y = pred_flag = 0;
if (idx_mbmode & 1) {
get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
}
ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
ff_vc1_mc_1mv(v, 0);
mb_has_coeffs = !(idx_mbmode & 2);
} else { // 4-MV
v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
for (i = 0; i < 4; i++) {
dmv_x = dmv_y = pred_flag = 0;
if (v->fourmvbp & (8 >> i))
get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
ff_vc1_mc_4mv_luma(v, i, 0, 0);
}
ff_vc1_mc_4mv_chroma(v, 0);
mb_has_coeffs = idx_mbmode & 1;
}
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
if (cbp) {
GET_MQUANT();
}
s->cur_pic.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && cbp) {
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index], VC1_TTMB_VLC_BITS, 2);
}
dst_idx = 0;
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
if (val) {
pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
&block_tt);
if (pat < 0)
return pat;
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
}
if (v->overlap && v->pq >= 9)
ff_vc1_p_overlap_filter(v);
vc1_put_blocks_clamped(v, 1);
v->cbp[s->mb_x] = block_cbp;
v->ttblk[s->mb_x] = block_tt;
return 0;
}
/** Decode one B-frame MB (in Main profile)
*/
static int vc1_decode_b_mb(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 0; /* last_flag */
int index, index1; /* LUT indexes */
int val, sign; /* temp values */
int first_block = 1;
int dst_idx, off;
int skipped, direct;
int dmv_x[2], dmv_y[2];
int bmvtype = BMV_TYPE_BACKWARD;
mquant = v->pq; /* lossy initialization */
s->mb_intra = 0;
if (v->dmb_is_raw)
direct = get_bits1(gb);
else
direct = v->direct_mb_plane[mb_pos];
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->cur_pic.qscale_table[mb_pos] = 0;
if (!direct) {
if (!skipped) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
dmv_x[1] = dmv_x[0];
dmv_y[1] = dmv_y[0];
}
if (skipped || !s->mb_intra) {
bmvtype = decode012(gb);
switch (bmvtype) {
case 0:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
break;
case 1:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
dmv_x[0] = dmv_y[0] = 0;
}
}
}
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (skipped) {
if (direct)
bmvtype = BMV_TYPE_INTERPOLATED;
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return 0;
}
if (direct) {
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->mb_intra = 0;
s->cur_pic.qscale_table[mb_pos] = mquant;
if (!v->ttmbf)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index], VC1_TTMB_VLC_BITS, 2);
dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if (!mb_has_coeffs && !s->mb_intra) {
/* no coded blocks - effectively skipped */
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return 0;
}
if (s->mb_intra && !mb_has_coeffs) {
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
s->ac_pred = get_bits1(gb);
cbp = 0;
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
} else {
if (bmvtype == BMV_TYPE_INTERPOLATED) {
GET_MVDATA(dmv_x[0], dmv_y[0]);
if (!mb_has_coeffs) {
/* interpolated skipped block */
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
return 0;
}
}
ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
if (!s->mb_intra) {
vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
}
if (s->mb_intra)
s->ac_pred = get_bits1(gb);
cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index], VC1_TTMB_VLC_BITS, 2);
}
}
dst_idx = 0;
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
v->mb_type[0][s->block_index[i]] = s->mb_intra;
if (s->mb_intra) {
/* check if prediction blocks A and C are available */
v->a_avail = v->c_avail = 0;
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
s->block[i][j] *= 2;
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
i & 4 ? s->uvlinesize
: s->linesize);
} else if (val) {
int pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
if (pat < 0)
return pat;
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
return 0;
}
/** Decode one B-frame MB (in interlaced field B picture)
*/
static int vc1_decode_b_mb_intfi(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mb_has_coeffs = 0; /* last_flag */
int val; /* temp value */
int first_block = 1;
int dst_idx, off;
int fwd;
int dmv_x[2], dmv_y[2], pred_flag[2];
int bmvtype = BMV_TYPE_BACKWARD;
int block_cbp = 0, pat, block_tt = 0;
int idx_mbmode;
mquant = v->pq; /* Lossy initialization */
s->mb_intra = 0;
idx_mbmode = get_vlc2(gb, v->mbmode_vlc, VC1_IF_MBMODE_VLC_BITS, 2);
if (idx_mbmode <= 1) { // intra MB
v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
s->mb_intra = 1;
s->cur_pic.motion_val[1][s->block_index[0]][0] = 0;
s->cur_pic.motion_val[1][s->block_index[0]][1] = 0;
s->cur_pic.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same (not sure if necessary here) */
s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
mb_has_coeffs = idx_mbmode & 1;
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_ICBPCY_VLC_BITS, 2);
dst_idx = 0;
for (i = 0; i < 6; i++) {
v->a_avail = v->c_avail = 0;
v->mb_type[0][s->block_index[i]] = 1;
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (v->rangeredfrm)
for (j = 0; j < 64; j++)
s->block[i][j] <<= 1;
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize
: s->linesize);
}
} else {
s->mb_intra = v->is_intra[s->mb_x] = 0;
s->cur_pic.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = 0;
if (v->fmb_is_raw)
fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
else
fwd = v->forward_mb_plane[mb_pos];
if (idx_mbmode <= 5) { // 1-MV
int interpmvp = 0;
dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
pred_flag[0] = pred_flag[1] = 0;
if (fwd)
bmvtype = BMV_TYPE_FORWARD;
else {
bmvtype = decode012(gb);
switch (bmvtype) {
case 0:
bmvtype = BMV_TYPE_BACKWARD;
break;
case 1:
bmvtype = BMV_TYPE_DIRECT;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
interpmvp = get_bits1(gb);
}
}
v->bmvtype = bmvtype;
if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
}
if (interpmvp) {
get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
}
if (bmvtype == BMV_TYPE_DIRECT) {
dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
if (!s->next_pic.ptr->field_picture) {
av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
return AVERROR_INVALIDDATA;
}
}
ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
mb_has_coeffs = !(idx_mbmode & 2);
} else { // 4-MV
if (fwd)
bmvtype = BMV_TYPE_FORWARD;
v->bmvtype = bmvtype;
v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
for (i = 0; i < 4; i++) {
dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
if (v->fourmvbp & (8 >> i)) {
get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
&dmv_y[bmvtype == BMV_TYPE_BACKWARD],
&pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
}
ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
}
ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
mb_has_coeffs = idx_mbmode & 1;
}
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
if (cbp) {
GET_MQUANT();
}
s->cur_pic.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && cbp) {
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index], VC1_TTMB_VLC_BITS, 2);
}
dst_idx = 0;
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
if (val) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : s->linesize,
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
if (pat < 0)
return pat;
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
}
v->cbp[s->mb_x] = block_cbp;
v->ttblk[s->mb_x] = block_tt;
return 0;
}
/** Decode one B-frame MB (in interlaced frame B picture)
*/
static int vc1_decode_b_mb_intfr(VC1Context *v)
{
MpegEncContext *s = &v->s;
GetBitContext *gb = &s->gb;
int i, j;
int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
int cbp = 0; /* cbp decoding stuff */
int mqdiff, mquant; /* MB quantization */
int ttmb = v->ttfrm; /* MB Transform type */
int mvsw = 0; /* motion vector switch */
int mb_has_coeffs = 1; /* last_flag */
int dmv_x, dmv_y; /* Differential MV components */
int val; /* temp value */
int first_block = 1;
int dst_idx, off;
int skipped, direct, twomv = 0;
int block_cbp = 0, pat, block_tt = 0;
int idx_mbmode = 0, mvbp;
int stride_y, fieldtx;
int bmvtype = BMV_TYPE_BACKWARD;
int dir, dir2;
mquant = v->pq; /* Lossy initialization */
s->mb_intra = 0;
if (v->skip_is_raw)
skipped = get_bits1(gb);
else
skipped = v->s.mbskip_table[mb_pos];
if (!skipped) {
idx_mbmode = get_vlc2(gb, v->mbmode_vlc, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
twomv = 1;
v->blk_mv_type[s->block_index[0]] = 1;
v->blk_mv_type[s->block_index[1]] = 1;
v->blk_mv_type[s->block_index[2]] = 1;
v->blk_mv_type[s->block_index[3]] = 1;
} else {
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
}
}
if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
for (i = 0; i < 4; i++) {
s->mv[0][i][0] = s->cur_pic.motion_val[0][s->block_index[i]][0] = 0;
s->mv[0][i][1] = s->cur_pic.motion_val[0][s->block_index[i]][1] = 0;
s->mv[1][i][0] = s->cur_pic.motion_val[1][s->block_index[i]][0] = 0;
s->mv[1][i][1] = s->cur_pic.motion_val[1][s->block_index[i]][1] = 0;
}
v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
s->mb_intra = 1;
s->cur_pic.mb_type[mb_pos] = MB_TYPE_INTRA;
fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
mb_has_coeffs = get_bits1(gb);
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same (not sure if necessary here) */
s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
dst_idx = 0;
for (i = 0; i < 6; i++) {
v->a_avail = v->c_avail = 0;
v->mb_type[0][s->block_index[i]] = 1;
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (i == 2 || i == 3 || !s->first_slice_line)
v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
if (i == 1 || i == 3 || s->mb_x)
v->c_avail = v->mb_type[0][s->block_index[i] - 1];
vc1_decode_intra_block(v, s->block[i], i, val, mquant,
(i & 4) ? v->codingset2 : v->codingset);
if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
if (i < 4) {
stride_y = s->linesize << fieldtx;
off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
} else {
stride_y = s->uvlinesize;
off = 0;
}
s->idsp.put_signed_pixels_clamped(s->block[i],
s->dest[dst_idx] + off,
stride_y);
}
} else {
s->mb_intra = v->is_intra[s->mb_x] = 0;
if (v->dmb_is_raw)
direct = get_bits1(gb);
else
direct = v->direct_mb_plane[mb_pos];
if (direct) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
if (s->next_pic.ptr->field_picture)
av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
s->mv[0][0][0] = s->cur_pic.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_pic.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
s->mv[0][0][1] = s->cur_pic.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_pic.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
s->mv[1][0][0] = s->cur_pic.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_pic.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
s->mv[1][0][1] = s->cur_pic.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_pic.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
if (twomv) {
s->mv[0][2][0] = s->cur_pic.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_pic.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
s->mv[0][2][1] = s->cur_pic.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_pic.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
s->mv[1][2][0] = s->cur_pic.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_pic.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
s->mv[1][2][1] = s->cur_pic.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_pic.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
for (i = 1; i < 4; i += 2) {
s->mv[0][i][0] = s->cur_pic.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
s->mv[0][i][1] = s->cur_pic.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
s->mv[1][i][0] = s->cur_pic.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
s->mv[1][i][1] = s->cur_pic.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
}
} else {
for (i = 1; i < 4; i++) {
s->mv[0][i][0] = s->cur_pic.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
s->mv[0][i][1] = s->cur_pic.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
s->mv[1][i][0] = s->cur_pic.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
s->mv[1][i][1] = s->cur_pic.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
}
}
}
if (!direct) {
if (skipped || !s->mb_intra) {
bmvtype = decode012(gb);
switch (bmvtype) {
case 0:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
break;
case 1:
bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
break;
case 2:
bmvtype = BMV_TYPE_INTERPOLATED;
}
}
if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
mvsw = get_bits1(gb);
}
if (!skipped) { // inter MB
mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
if (mb_has_coeffs)
cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc, VC1_CBPCY_P_VLC_BITS, 2);
if (!direct) {
if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
} else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
v->twomvbp = get_vlc2(gb, v->twomvbp_vlc, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
}
}
for (i = 0; i < 6; i++)
v->mb_type[0][s->block_index[i]] = 0;
fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
/* for all motion vector read MVDATA and motion compensate each block */
dst_idx = 0;
if (direct) {
if (twomv) {
for (i = 0; i < 4; i++) {
ff_vc1_mc_4mv_luma(v, i, 0, 0);
ff_vc1_mc_4mv_luma(v, i, 1, 1);
}
ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
} else {
ff_vc1_mc_1mv(v, 0);
ff_vc1_interp_mc(v);
}
} else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
mvbp = v->fourmvbp;
for (i = 0; i < 4; i++) {
dir = i==1 || i==3;
dmv_x = dmv_y = 0;
val = ((mvbp >> (3 - i)) & 1);
if (val)
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
j = i > 1 ? 2 : 0;
ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, dir);
ff_vc1_mc_4mv_luma(v, j, dir, dir);
ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
}
ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
} else if (bmvtype == BMV_TYPE_INTERPOLATED) {
mvbp = v->twomvbp;
dmv_x = dmv_y = 0;
if (mvbp & 2)
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, 0);
ff_vc1_mc_1mv(v, 0);
dmv_x = dmv_y = 0;
if (mvbp & 1)
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, 1);
ff_vc1_interp_mc(v);
} else if (twomv) {
dir = bmvtype == BMV_TYPE_BACKWARD;
dir2 = dir;
if (mvsw)
dir2 = !dir;
mvbp = v->twomvbp;
dmv_x = dmv_y = 0;
if (mvbp & 2)
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, dir);
dmv_x = dmv_y = 0;
if (mvbp & 1)
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, dir2);
if (mvsw) {
for (i = 0; i < 2; i++) {
s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->cur_pic.motion_val[dir][s->block_index[i+2]][0] = s->cur_pic.motion_val[dir][s->block_index[i]][0];
s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->cur_pic.motion_val[dir][s->block_index[i+2]][1] = s->cur_pic.motion_val[dir][s->block_index[i]][1];
s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->cur_pic.motion_val[dir2][s->block_index[i]][0] = s->cur_pic.motion_val[dir2][s->block_index[i+2]][0];
s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->cur_pic.motion_val[dir2][s->block_index[i]][1] = s->cur_pic.motion_val[dir2][s->block_index[i+2]][1];
}
} else {
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, !dir);
ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, !dir);
}
ff_vc1_mc_4mv_luma(v, 0, dir, 0);
ff_vc1_mc_4mv_luma(v, 1, dir, 0);
ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
} else {
dir = bmvtype == BMV_TYPE_BACKWARD;
mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
dmv_x = dmv_y = 0;
if (mvbp)
get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, dir);
v->blk_mv_type[s->block_index[0]] = 1;
v->blk_mv_type[s->block_index[1]] = 1;
v->blk_mv_type[s->block_index[2]] = 1;
v->blk_mv_type[s->block_index[3]] = 1;
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, !dir);
for (i = 0; i < 2; i++) {
s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->cur_pic.motion_val[!dir][s->block_index[i+2]][0] = s->cur_pic.motion_val[!dir][s->block_index[i]][0];
s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->cur_pic.motion_val[!dir][s->block_index[i+2]][1] = s->cur_pic.motion_val[!dir][s->block_index[i]][1];
}
ff_vc1_mc_1mv(v, dir);
}
if (cbp)
GET_MQUANT(); // p. 227
s->cur_pic.qscale_table[mb_pos] = mquant;
if (!v->ttmbf && cbp)
ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index], VC1_TTMB_VLC_BITS, 2);
for (i = 0; i < 6; i++) {
s->dc_val[0][s->block_index[i]] = 0;
dst_idx += i >> 2;
val = ((cbp >> (5 - i)) & 1);
if (!fieldtx)
off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
else
off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
if (val) {
pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
first_block, s->dest[dst_idx] + off,
(i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
if (pat < 0)
return pat;
block_cbp |= pat << (i << 2);
if (!v->ttmbf && ttmb < 8)
ttmb = -1;
first_block = 0;
}
}
} else { // skipped
dir = 0;
for (i = 0; i < 6; i++) {
v->mb_type[0][s->block_index[i]] = 0;
s->dc_val[0][s->block_index[i]] = 0;
}
s->cur_pic.mb_type[mb_pos] = MB_TYPE_SKIP;
s->cur_pic.qscale_table[mb_pos] = 0;
v->blk_mv_type[s->block_index[0]] = 0;
v->blk_mv_type[s->block_index[1]] = 0;
v->blk_mv_type[s->block_index[2]] = 0;
v->blk_mv_type[s->block_index[3]] = 0;
if (!direct) {
if (bmvtype == BMV_TYPE_INTERPOLATED) {
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, 0);
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, 1);
} else {
dir = bmvtype == BMV_TYPE_BACKWARD;
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, dir);
if (mvsw) {
int dir2 = dir;
if (mvsw)
dir2 = !dir;
for (i = 0; i < 2; i++) {
s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->cur_pic.motion_val[dir][s->block_index[i+2]][0] = s->cur_pic.motion_val[dir][s->block_index[i]][0];
s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->cur_pic.motion_val[dir][s->block_index[i+2]][1] = s->cur_pic.motion_val[dir][s->block_index[i]][1];
s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->cur_pic.motion_val[dir2][s->block_index[i]][0] = s->cur_pic.motion_val[dir2][s->block_index[i+2]][0];
s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->cur_pic.motion_val[dir2][s->block_index[i]][1] = s->cur_pic.motion_val[dir2][s->block_index[i+2]][1];
}
} else {
v->blk_mv_type[s->block_index[0]] = 1;
v->blk_mv_type[s->block_index[1]] = 1;
v->blk_mv_type[s->block_index[2]] = 1;
v->blk_mv_type[s->block_index[3]] = 1;
ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, !dir);
for (i = 0; i < 2; i++) {
s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->cur_pic.motion_val[!dir][s->block_index[i+2]][0] = s->cur_pic.motion_val[!dir][s->block_index[i]][0];
s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->cur_pic.motion_val[!dir][s->block_index[i+2]][1] = s->cur_pic.motion_val[!dir][s->block_index[i]][1];
}
}
}
}
ff_vc1_mc_1mv(v, dir);
if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
ff_vc1_interp_mc(v);
}
v->fieldtx_plane[mb_pos] = 0;
}
}
v->cbp[s->mb_x] = block_cbp;
v->ttblk[s->mb_x] = block_tt;
return 0;
}
/** Decode blocks of I-frame
*/
static void vc1_decode_i_blocks(VC1Context *v)
{
int k, j;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
/* select coding mode used for VLC tables selection */
switch (v->y_ac_table_index) {
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch (v->c_ac_table_index) {
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[v->pq];
s->c_dc_scale = s->c_dc_scale_table[v->pq];
//do frame decode
s->mb_x = s->mb_y = 0;
s->mb_intra = 1;
s->first_slice_line = 1;
for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
init_block_index(v);
for (; s->mb_x < v->end_mb_x; s->mb_x++) {
update_block_index(s);
s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
mb_pos = s->mb_x + s->mb_y * s->mb_width;
s->cur_pic.mb_type[mb_pos] = MB_TYPE_INTRA;
s->cur_pic.qscale_table[mb_pos] = v->pq;
for (int i = 0; i < 4; i++) {
s->cur_pic.motion_val[1][s->block_index[i]][0] = 0;
s->cur_pic.motion_val[1][s->block_index[i]][1] = 0;
}
// do actual MB decoding and displaying
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc,
MSMP4_MB_INTRA_VLC_BITS, 2);
v->s.ac_pred = get_bits1(&v->s.gb);
for (k = 0; k < 6; k++) {
v->mb_type[0][s->block_index[k]] = 1;
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
vc1_decode_i_block(v, v->block[v->cur_blk_idx][block_map[k]], k, val, (k < 4) ? v->codingset : v->codingset2);
if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[k]]);
}
if (v->overlap && v->pq >= 9) {
ff_vc1_i_overlap_filter(v);
if (v->rangeredfrm)
for (k = 0; k < 6; k++)
for (j = 0; j < 64; j++)
v->block[v->cur_blk_idx][block_map[k]][j] *= 2;
vc1_put_blocks_clamped(v, 1);
} else {
if (v->rangeredfrm)
for (k = 0; k < 6; k++)
for (j = 0; j < 64; j++)
v->block[v->cur_blk_idx][block_map[k]][j] = (v->block[v->cur_blk_idx][block_map[k]][j] - 64) * 2;
vc1_put_blocks_clamped(v, 0);
}
if (v->s.loop_filter)
ff_vc1_i_loop_filter(v);
if (get_bits_left(&s->gb) < 0) {
ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
get_bits_count(&s->gb), s->gb.size_in_bits);
return;
}
v->topleft_blk_idx = (v->topleft_blk_idx + 1) % (v->end_mb_x + 2);
v->top_blk_idx = (v->top_blk_idx + 1) % (v->end_mb_x + 2);
v->left_blk_idx = (v->left_blk_idx + 1) % (v->end_mb_x + 2);
v->cur_blk_idx = (v->cur_blk_idx + 1) % (v->end_mb_x + 2);
}
s->first_slice_line = 0;
}
/* This is intentionally mb_height and not end_mb_y - unlike in advanced
* profile, these only differ are when decoding MSS2 rectangles. */
ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
}
/** Decode blocks of I-frame for advanced profile
*/
static int vc1_decode_i_blocks_adv(VC1Context *v)
{
int k;
MpegEncContext *s = &v->s;
int cbp, val;
uint8_t *coded_val;
int mb_pos;
int mquant;
int mqdiff;
GetBitContext *gb = &s->gb;
if (get_bits_left(gb) <= 1)
return AVERROR_INVALIDDATA;
/* select coding mode used for VLC tables selection */
switch (v->y_ac_table_index) {
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch (v->c_ac_table_index) {
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
// do frame decode
s->mb_intra = 1;
s->first_slice_line = 1;
s->mb_x = 0;
s->mb_y = s->start_mb_y;
if (s->start_mb_y) {
memset(&s->coded_block[(2 * s->mb_y - 1) * s->b8_stride - 2], 0,
(1 + s->b8_stride) * sizeof(*s->coded_block));
}
for (; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
init_block_index(v);
for (;s->mb_x < s->mb_width; s->mb_x++) {
mquant = v->pq;
update_block_index(s);
s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
mb_pos = s->mb_x + s->mb_y * s->mb_stride;
s->cur_pic.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
for (int i = 0; i < 4; i++) {
s->cur_pic.motion_val[1][s->block_index[i] + v->blocks_off][0] = 0;
s->cur_pic.motion_val[1][s->block_index[i] + v->blocks_off][1] = 0;
}
// do actual MB decoding and displaying
if (v->fieldtx_is_raw)
v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
if (get_bits_left(&v->s.gb) <= 1) {
ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
return 0;
}
cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc,
MSMP4_MB_INTRA_VLC_BITS, 2);
if (v->acpred_is_raw)
v->s.ac_pred = get_bits1(&v->s.gb);
else
v->s.ac_pred = v->acpred_plane[mb_pos];
if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
GET_MQUANT();
s->cur_pic.qscale_table[mb_pos] = mquant;
/* Set DC scale - y and c use the same */
s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
for (k = 0; k < 6; k++) {
v->mb_type[0][s->block_index[k]] = 1;
val = ((cbp >> (5 - k)) & 1);
if (k < 4) {
int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
val = val ^ pred;
*coded_val = val;
}
cbp |= val << (5 - k);
v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
v->c_avail = !!s->mb_x || (k == 1 || k == 3);
vc1_decode_i_block_adv(v, v->block[v->cur_blk_idx][block_map[k]], k, val,
(k < 4) ? v->codingset : v->codingset2, mquant);
if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
continue;
v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[k]]);
}
if (v->overlap && (v->pq >= 9 || v->condover != CONDOVER_NONE))
ff_vc1_i_overlap_filter(v);
vc1_put_blocks_clamped(v, 1);
if (v->s.loop_filter)
ff_vc1_i_loop_filter(v);
if (get_bits_left(&s->gb) < 0) {
// TODO: may need modification to handle slice coding
ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
get_bits_count(&s->gb), s->gb.size_in_bits);
return 0;
}
inc_blk_idx(v->topleft_blk_idx);
inc_blk_idx(v->top_blk_idx);
inc_blk_idx(v->left_blk_idx);
inc_blk_idx(v->cur_blk_idx);
}
s->first_slice_line = 0;
}
ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
(s->end_mb_y << v->field_mode) - 1, ER_MB_END);
return 0;
}
static void vc1_decode_p_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
int apply_loop_filter;
/* select coding mode used for VLC tables selection */
switch (v->c_ac_table_index) {
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch (v->c_ac_table_index) {
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
s->first_slice_line = 1;
memset(v->cbp_base, 0, sizeof(v->cbp_base[0]) * 3 * s->mb_stride);
for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
init_block_index(v);
for (; s->mb_x < s->mb_width; s->mb_x++) {
update_block_index(s);
if (v->fcm == ILACE_FIELD || (v->fcm == PROGRESSIVE && v->mv_type_is_raw) || v->skip_is_raw)
if (get_bits_left(&v->s.gb) <= 1) {
ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
return;
}
if (v->fcm == ILACE_FIELD) {
vc1_decode_p_mb_intfi(v);
if (apply_loop_filter)
ff_vc1_p_loop_filter(v);
} else if (v->fcm == ILACE_FRAME) {
vc1_decode_p_mb_intfr(v);
if (apply_loop_filter)
ff_vc1_p_intfr_loop_filter(v);
} else {
vc1_decode_p_mb(v);
if (apply_loop_filter)
ff_vc1_p_loop_filter(v);
}
if (get_bits_left(&s->gb) < 0 || get_bits_count(&s->gb) < 0) {
// TODO: may need modification to handle slice coding
ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
get_bits_count(&s->gb), s->gb.size_in_bits, s->mb_x, s->mb_y);
return;
}
inc_blk_idx(v->topleft_blk_idx);
inc_blk_idx(v->top_blk_idx);
inc_blk_idx(v->left_blk_idx);
inc_blk_idx(v->cur_blk_idx);
}
memmove(v->cbp_base,
v->cbp - s->mb_stride,
sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
memmove(v->ttblk_base,
v->ttblk - s->mb_stride,
sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
memmove(v->is_intra_base,
v->is_intra - s->mb_stride,
sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
memmove(v->luma_mv_base,
v->luma_mv - s->mb_stride,
sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
s->first_slice_line = 0;
}
ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
(s->end_mb_y << v->field_mode) - 1, ER_MB_END);
}
static void vc1_decode_b_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
/* select coding mode used for VLC tables selection */
switch (v->c_ac_table_index) {
case 0:
v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
break;
case 1:
v->codingset = CS_HIGH_MOT_INTRA;
break;
case 2:
v->codingset = CS_MID_RATE_INTRA;
break;
}
switch (v->c_ac_table_index) {
case 0:
v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
break;
case 1:
v->codingset2 = CS_HIGH_MOT_INTER;
break;
case 2:
v->codingset2 = CS_MID_RATE_INTER;
break;
}
s->first_slice_line = 1;
for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
init_block_index(v);
for (; s->mb_x < s->mb_width; s->mb_x++) {
update_block_index(s);
if (v->fcm == ILACE_FIELD || v->skip_is_raw || v->dmb_is_raw)
if (get_bits_left(&v->s.gb) <= 1) {
ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
return;
}
if (v->fcm == ILACE_FIELD) {
vc1_decode_b_mb_intfi(v);
if (v->s.loop_filter)
ff_vc1_b_intfi_loop_filter(v);
} else if (v->fcm == ILACE_FRAME) {
vc1_decode_b_mb_intfr(v);
if (v->s.loop_filter)
ff_vc1_p_intfr_loop_filter(v);
} else {
vc1_decode_b_mb(v);
if (v->s.loop_filter)
ff_vc1_i_loop_filter(v);
}
if (get_bits_left(&s->gb) < 0 || get_bits_count(&s->gb) < 0) {
// TODO: may need modification to handle slice coding
ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
get_bits_count(&s->gb), s->gb.size_in_bits, s->mb_x, s->mb_y);
return;
}
}
memmove(v->cbp_base,
v->cbp - s->mb_stride,
sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
memmove(v->ttblk_base,
v->ttblk - s->mb_stride,
sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
memmove(v->is_intra_base,
v->is_intra - s->mb_stride,
sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
s->first_slice_line = 0;
}
ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
(s->end_mb_y << v->field_mode) - 1, ER_MB_END);
}
static void vc1_decode_skip_blocks(VC1Context *v)
{
MpegEncContext *s = &v->s;
if (!v->s.last_pic.data[0])
return;
ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
s->first_slice_line = 1;
for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
s->mb_x = 0;
init_block_index(v);
update_block_index(s);
memcpy(s->dest[0], s->last_pic.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
memcpy(s->dest[1], s->last_pic.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
memcpy(s->dest[2], s->last_pic.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
s->first_slice_line = 0;
}
}
void ff_vc1_decode_blocks(VC1Context *v)
{
v->s.esc3_level_length = 0;
if (v->x8_type) {
avcodec/mpegpicture: Split MPVPicture into WorkPicture and ordinary Pic There are two types of MPVPictures: Three (cur_pic, last_pic, next_pic) that are directly part of MpegEncContext and an array of MPVPictures that are separately allocated and are mostly accessed via pointers (cur|last|next)_pic_ptr; they are also used to store AVFrames in the encoder (necessary due to B-frames). As the name implies, each of the former is directly associated with one of the _ptr pointers: They actually share the same underlying buffers, but the ones that are part of the context can have their data pointers offset and their linesize doubled for field pictures. Up until now, each of these had their own references; in particular, there was an underlying av_frame_ref() to sync cur_pic and cur_pic_ptr etc. This is wasteful. This commit changes this relationship: cur_pic, last_pic and next_pic now become MPVWorkPictures; this structure does not have an AVFrame at all any more, but only the cached values of data and linesize. It also contains a pointer to the corresponding MPVPicture, establishing a more natural relationsship between the two. This already means that creating the context-pictures from the pointers can no longer fail. What has not been changed is the fact that the MPVPicture* pointers are not ownership pointers and that the MPVPictures are part of an array of MPVPictures that is owned by a single AVCodecContext. Doing so will be done in a latter commit. Signed-off-by: Andreas Rheinhardt <andreas.rheinhardt@outlook.com>
1 year ago
ff_intrax8_decode_picture(&v->x8, v->s.cur_pic.ptr,
&v->s.gb, &v->s.mb_x, &v->s.mb_y,
2 * v->pq + v->halfpq, v->pq * !v->pquantizer,
v->s.loop_filter, v->s.low_delay);
ff_er_add_slice(&v->s.er, 0, 0,
(v->s.mb_x >> 1) - 1, (v->s.mb_y >> 1) - 1,
ER_MB_END);
} else {
v->cur_blk_idx = 0;
v->left_blk_idx = -1;
v->topleft_blk_idx = 1;
v->top_blk_idx = 2;
switch (v->s.pict_type) {
case AV_PICTURE_TYPE_I:
if (v->profile == PROFILE_ADVANCED)
vc1_decode_i_blocks_adv(v);
else
vc1_decode_i_blocks(v);
break;
case AV_PICTURE_TYPE_P:
if (v->p_frame_skipped)
vc1_decode_skip_blocks(v);
else
vc1_decode_p_blocks(v);
break;
case AV_PICTURE_TYPE_B:
if (v->bi_type) {
if (v->profile == PROFILE_ADVANCED)
vc1_decode_i_blocks_adv(v);
else
vc1_decode_i_blocks(v);
} else
vc1_decode_b_blocks(v);
break;
}
}
}