|
|
|
/*
|
|
|
|
* QCELP decoder
|
|
|
|
* Copyright (c) 2007 Reynaldo H. Verdejo Pinochet
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file qcelpdec.c
|
|
|
|
* QCELP decoder
|
|
|
|
* @author Reynaldo H. Verdejo Pinochet
|
|
|
|
* @remark FFmpeg merging spearheaded by Kenan Gillet
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stddef.h>
|
|
|
|
|
|
|
|
#include "avcodec.h"
|
|
|
|
#include "bitstream.h"
|
|
|
|
|
|
|
|
#include "qcelp.h"
|
|
|
|
#include "qcelpdata.h"
|
|
|
|
|
|
|
|
#include "celp_math.h"
|
|
|
|
#include "celp_filters.h"
|
|
|
|
|
|
|
|
#undef NDEBUG
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
static void weighted_vector_sumf(float *out, const float *in_a,
|
|
|
|
const float *in_b, float weight_coeff_a,
|
|
|
|
float weight_coeff_b, int length)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for(i=0; i<length; i++)
|
|
|
|
out[i] = weight_coeff_a * in_a[i]
|
|
|
|
+ weight_coeff_b * in_b[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initialize the speech codec according to the specification.
|
|
|
|
*
|
|
|
|
* TIA/EIA/IS-733 2.4.9
|
|
|
|
*/
|
|
|
|
static av_cold int qcelp_decode_init(AVCodecContext *avctx)
|
|
|
|
{
|
|
|
|
QCELPContext *q = avctx->priv_data;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
avctx->sample_fmt = SAMPLE_FMT_FLT;
|
|
|
|
|
|
|
|
for (i = 0; i < 10; i++)
|
|
|
|
q->prev_lspf[i] = (i + 1) / 11.;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Decodes the 10 quantized LSP frequencies from the LSPV/LSP
|
|
|
|
* transmission codes of any bitrate and checks for badly received packets.
|
|
|
|
*
|
|
|
|
* @param q the context
|
|
|
|
* @param lspf line spectral pair frequencies
|
|
|
|
*
|
|
|
|
* @return 0 on success, -1 if the packet is badly received
|
|
|
|
*
|
|
|
|
* TIA/EIA/IS-733 2.4.3.2.6.2-2, 2.4.8.7.3
|
|
|
|
*/
|
|
|
|
static int decode_lspf(QCELPContext *q, float *lspf)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
float tmp_lspf;
|
|
|
|
|
|
|
|
if(q->bitrate == RATE_OCTAVE || q->bitrate == I_F_Q)
|
|
|
|
{
|
|
|
|
float smooth;
|
|
|
|
const float *predictors = (q->prev_bitrate != RATE_OCTAVE &&
|
|
|
|
q->prev_bitrate != I_F_Q ? q->prev_lspf
|
|
|
|
: q->predictor_lspf);
|
|
|
|
|
|
|
|
if(q->bitrate == RATE_OCTAVE)
|
|
|
|
{
|
|
|
|
q->octave_count++;
|
|
|
|
|
|
|
|
for(i=0; i<10; i++)
|
|
|
|
{
|
|
|
|
q->predictor_lspf[i] =
|
|
|
|
lspf[i] = (q->lspv[i] ? QCELP_LSP_SPREAD_FACTOR
|
|
|
|
: -QCELP_LSP_SPREAD_FACTOR)
|
|
|
|
+ predictors[i] * QCELP_LSP_OCTAVE_PREDICTOR
|
|
|
|
+ (i + 1) * ((1 - QCELP_LSP_OCTAVE_PREDICTOR)/11);
|
|
|
|
}
|
|
|
|
smooth = (q->octave_count < 10 ? .875 : 0.1);
|
|
|
|
}else
|
|
|
|
{
|
|
|
|
float erasure_coeff = QCELP_LSP_OCTAVE_PREDICTOR;
|
|
|
|
|
|
|
|
assert(q->bitrate == I_F_Q);
|
|
|
|
|
|
|
|
if(q->erasure_count > 1)
|
|
|
|
erasure_coeff *= (q->erasure_count < 4 ? 0.9 : 0.7);
|
|
|
|
|
|
|
|
for(i=0; i<10; i++)
|
|
|
|
{
|
|
|
|
q->predictor_lspf[i] =
|
|
|
|
lspf[i] = (i + 1) * ( 1 - erasure_coeff)/11
|
|
|
|
+ erasure_coeff * predictors[i];
|
|
|
|
}
|
|
|
|
smooth = 0.125;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check the stability of the LSP frequencies.
|
|
|
|
lspf[0] = FFMAX(lspf[0], QCELP_LSP_SPREAD_FACTOR);
|
|
|
|
for(i=1; i<10; i++)
|
|
|
|
lspf[i] = FFMAX(lspf[i], (lspf[i-1] + QCELP_LSP_SPREAD_FACTOR));
|
|
|
|
|
|
|
|
lspf[9] = FFMIN(lspf[9], (1.0 - QCELP_LSP_SPREAD_FACTOR));
|
|
|
|
for(i=9; i>0; i--)
|
|
|
|
lspf[i-1] = FFMIN(lspf[i-1], (lspf[i] - QCELP_LSP_SPREAD_FACTOR));
|
|
|
|
|
|
|
|
// Low-pass filter the LSP frequencies.
|
|
|
|
weighted_vector_sumf(lspf, lspf, q->prev_lspf, smooth, 1.0-smooth, 10);
|
|
|
|
}else
|
|
|
|
{
|
|
|
|
q->octave_count = 0;
|
|
|
|
|
|
|
|
tmp_lspf = 0.;
|
|
|
|
for(i=0; i<5 ; i++)
|
|
|
|
{
|
|
|
|
lspf[2*i+0] = tmp_lspf += qcelp_lspvq[i][q->lspv[i]][0] * 0.0001;
|
|
|
|
lspf[2*i+1] = tmp_lspf += qcelp_lspvq[i][q->lspv[i]][1] * 0.0001;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for badly received packets.
|
|
|
|
if(q->bitrate == RATE_QUARTER)
|
|
|
|
{
|
|
|
|
if(lspf[9] <= .70 || lspf[9] >= .97)
|
|
|
|
return -1;
|
|
|
|
for(i=3; i<10; i++)
|
|
|
|
if(fabs(lspf[i] - lspf[i-2]) < .08)
|
|
|
|
return -1;
|
|
|
|
}else
|
|
|
|
{
|
|
|
|
if(lspf[9] <= .66 || lspf[9] >= .985)
|
|
|
|
return -1;
|
|
|
|
for(i=4; i<10; i++)
|
|
|
|
if (fabs(lspf[i] - lspf[i-4]) < .0931)
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* If the received packet is Rate 1/4 a further sanity check is made of the
|
|
|
|
* codebook gain.
|
|
|
|
*
|
|
|
|
* @param cbgain the unpacked cbgain array
|
|
|
|
* @return -1 if the sanity check fails, 0 otherwise
|
|
|
|
*
|
|
|
|
* TIA/EIA/IS-733 2.4.8.7.3
|
|
|
|
*/
|
|
|
|
static int codebook_sanity_check_for_rate_quarter(const uint8_t *cbgain)
|
|
|
|
{
|
|
|
|
int i, prev_diff=0;
|
|
|
|
|
|
|
|
for(i=1; i<5; i++)
|
|
|
|
{
|
|
|
|
int diff = cbgain[i] - cbgain[i-1];
|
|
|
|
if(FFABS(diff) > 10)
|
|
|
|
return -1;
|
|
|
|
else if(FFABS(diff - prev_diff) > 12)
|
|
|
|
return -1;
|
|
|
|
prev_diff = diff;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Computes the scaled codebook vector Cdn From INDEX and GAIN
|
|
|
|
* for all rates.
|
|
|
|
*
|
|
|
|
* The specification lacks some information here.
|
|
|
|
*
|
|
|
|
* TIA/EIA/IS-733 has an omission on the codebook index determination
|
|
|
|
* formula for RATE_FULL and RATE_HALF frames at section 2.4.8.1.1. It says
|
|
|
|
* you have to subtract the decoded index parameter from the given scaled
|
|
|
|
* codebook vector index 'n' to get the desired circular codebook index, but
|
|
|
|
* it does not mention that you have to clamp 'n' to [0-9] in order to get
|
|
|
|
* RI-compliant results.
|
|
|
|
*
|
|
|
|
* The reason for this mistake seems to be the fact they forgot to mention you
|
|
|
|
* have to do these calculations per codebook subframe and adjust given
|
|
|
|
* equation values accordingly.
|
|
|
|
*
|
|
|
|
* @param q the context
|
|
|
|
* @param gain array holding the 4 pitch subframe gain values
|
|
|
|
* @param cdn_vector array for the generated scaled codebook vector
|
|
|
|
*/
|
|
|
|
static void compute_svector(const QCELPContext *q, const float *gain,
|
|
|
|
float *cdn_vector)
|
|
|
|
{
|
|
|
|
int i, j, k;
|
|
|
|
uint16_t cbseed, cindex;
|
|
|
|
float *rnd, tmp_gain, fir_filter_value;
|
|
|
|
|
|
|
|
switch(q->bitrate)
|
|
|
|
{
|
|
|
|
case RATE_FULL:
|
|
|
|
for(i=0; i<16; i++)
|
|
|
|
{
|
|
|
|
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
|
|
|
|
cindex = -q->cindex[i];
|
|
|
|
for(j=0; j<10; j++)
|
|
|
|
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cindex++ & 127];
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case RATE_HALF:
|
|
|
|
for(i=0; i<4; i++)
|
|
|
|
{
|
|
|
|
tmp_gain = gain[i] * QCELP_RATE_HALF_CODEBOOK_RATIO;
|
|
|
|
cindex = -q->cindex[i];
|
|
|
|
for (j = 0; j < 40; j++)
|
|
|
|
*cdn_vector++ = tmp_gain * qcelp_rate_half_codebook[cindex++ & 127];
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case RATE_QUARTER:
|
|
|
|
cbseed = (0x0003 & q->lspv[4])<<14 |
|
|
|
|
(0x003F & q->lspv[3])<< 8 |
|
|
|
|
(0x0060 & q->lspv[2])<< 1 |
|
|
|
|
(0x0007 & q->lspv[1])<< 3 |
|
|
|
|
(0x0038 & q->lspv[0])>> 3 ;
|
|
|
|
rnd = q->rnd_fir_filter_mem + 20;
|
|
|
|
for(i=0; i<8; i++)
|
|
|
|
{
|
|
|
|
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
|
|
|
|
for(k=0; k<20; k++)
|
|
|
|
{
|
|
|
|
cbseed = 521 * cbseed + 259;
|
|
|
|
*rnd = (int16_t)cbseed;
|
|
|
|
|
|
|
|
// FIR filter
|
|
|
|
fir_filter_value = 0.0;
|
|
|
|
for(j=0; j<10; j++)
|
|
|
|
fir_filter_value += qcelp_rnd_fir_coefs[j ]
|
|
|
|
* (rnd[-j ] + rnd[-20+j]);
|
|
|
|
|
|
|
|
fir_filter_value += qcelp_rnd_fir_coefs[10] * rnd[-10];
|
|
|
|
*cdn_vector++ = tmp_gain * fir_filter_value;
|
|
|
|
rnd++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
memcpy(q->rnd_fir_filter_mem, q->rnd_fir_filter_mem + 160, 20 * sizeof(float));
|
|
|
|
break;
|
|
|
|
case RATE_OCTAVE:
|
|
|
|
cbseed = q->first16bits;
|
|
|
|
for(i=0; i<8; i++)
|
|
|
|
{
|
|
|
|
tmp_gain = gain[i] * (QCELP_SQRT1887 / 32768.0);
|
|
|
|
for(j=0; j<20; j++)
|
|
|
|
{
|
|
|
|
cbseed = 521 * cbseed + 259;
|
|
|
|
*cdn_vector++ = tmp_gain * (int16_t)cbseed;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case I_F_Q:
|
|
|
|
cbseed = -44; // random codebook index
|
|
|
|
for(i=0; i<4; i++)
|
|
|
|
{
|
|
|
|
tmp_gain = gain[i] * QCELP_RATE_FULL_CODEBOOK_RATIO;
|
|
|
|
for(j=0; j<40; j++)
|
|
|
|
*cdn_vector++ = tmp_gain * qcelp_rate_full_codebook[cbseed++ & 127];
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Apply generic gain control.
|
|
|
|
*
|
|
|
|
* @param v_out output vector
|
|
|
|
* @param v_in gain-controlled vector
|
|
|
|
* @param v_ref vector to control gain of
|
|
|
|
*
|
|
|
|
* FIXME: If v_ref is a zero vector, it energy is zero
|
|
|
|
* and the behavior of the gain control is
|
|
|
|
* undefined in the specs.
|
|
|
|
*
|
|
|
|
* TIA/EIA/IS-733 2.4.8.3-2/3/4/5, 2.4.8.6
|
|
|
|
*/
|
|
|
|
static void apply_gain_ctrl(float *v_out, const float *v_ref,
|
|
|
|
const float *v_in)
|
|
|
|
{
|
|
|
|
int i, j, len;
|
|
|
|
float scalefactor;
|
|
|
|
|
|
|
|
for(i=0, j=0; i<4; i++)
|
|
|
|
{
|
|
|
|
scalefactor = ff_dot_productf(v_in + j, v_in + j, 40);
|
|
|
|
if(scalefactor)
|
|
|
|
scalefactor = sqrt(ff_dot_productf(v_ref + j, v_ref + j, 40)
|
|
|
|
/ scalefactor);
|
|
|
|
else
|
|
|
|
av_log_missing_feature(NULL, "Zero energy for gain control", 1);
|
|
|
|
for(len=j+40; j<len; j++)
|
|
|
|
v_out[j] = scalefactor * v_in[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Apply filter in pitch-subframe steps.
|
|
|
|
*
|
|
|
|
* @param memory buffer for the previous state of the filter
|
|
|
|
* - must be able to contain 303 elements
|
|
|
|
* - the 143 first elements are from the previous state
|
|
|
|
* - the next 160 are for output
|
|
|
|
* @param v_in input filter vector
|
|
|
|
* @param gain per-subframe gain array, each element is between 0.0 and 2.0
|
|
|
|
* @param lag per-subframe lag array, each element is
|
|
|
|
* - between 16 and 143 if its corresponding pfrac is 0,
|
|
|
|
* - between 16 and 139 otherwise
|
|
|
|
* @param pfrac per-subframe boolean array, 1 if the lag is fractional, 0
|
|
|
|
* otherwise
|
|
|
|
*
|
|
|
|
* @return filter output vector
|
|
|
|
*/
|
|
|
|
static const float *do_pitchfilter(float memory[303], const float v_in[160],
|
|
|
|
const float gain[4], const uint8_t *lag,
|
|
|
|
const uint8_t pfrac[4])
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
float *v_lag, *v_out;
|
|
|
|
const float *v_len;
|
|
|
|
|
|
|
|
v_out = memory + 143; // Output vector starts at memory[143].
|
|
|
|
|
|
|
|
for(i=0; i<4; i++)
|
|
|
|
{
|
|
|
|
if(gain[i])
|
|
|
|
{
|
|
|
|
v_lag = memory + 143 + 40 * i - lag[i];
|
|
|
|
for(v_len=v_in+40; v_in<v_len; v_in++)
|
|
|
|
{
|
|
|
|
if(pfrac[i]) // If it is a fractional lag...
|
|
|
|
{
|
|
|
|
for(j=0, *v_out=0.; j<4; j++)
|
|
|
|
*v_out += qcelp_hammsinc_table[j] * (v_lag[j-4] + v_lag[3-j]);
|
|
|
|
}else
|
|
|
|
*v_out = *v_lag;
|
|
|
|
|
|
|
|
*v_out = *v_in + gain[i] * *v_out;
|
|
|
|
|
|
|
|
v_lag++;
|
|
|
|
v_out++;
|
|
|
|
}
|
|
|
|
}else
|
|
|
|
{
|
|
|
|
memcpy(v_out, v_in, 40 * sizeof(float));
|
|
|
|
v_in += 40;
|
|
|
|
v_out += 40;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
memmove(memory, memory + 160, 143 * sizeof(float));
|
|
|
|
return memory + 143;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Interpolates LSP frequencies and computes LPC coefficients
|
|
|
|
* for a given bitrate & pitch subframe.
|
|
|
|
*
|
|
|
|
* TIA/EIA/IS-733 2.4.3.3.4
|
|
|
|
*
|
|
|
|
* @param q the context
|
|
|
|
* @param curr_lspf LSP frequencies vector of the current frame
|
|
|
|
* @param lpc float vector for the resulting LPC
|
|
|
|
* @param subframe_num frame number in decoded stream
|
|
|
|
*/
|
|
|
|
void interpolate_lpc(QCELPContext *q, const float *curr_lspf, float *lpc,
|
|
|
|
const int subframe_num)
|
|
|
|
{
|
|
|
|
float interpolated_lspf[10];
|
|
|
|
float weight;
|
|
|
|
|
|
|
|
if(q->bitrate >= RATE_QUARTER)
|
|
|
|
weight = 0.25 * (subframe_num + 1);
|
|
|
|
else if(q->bitrate == RATE_OCTAVE && !subframe_num)
|
|
|
|
weight = 0.625;
|
|
|
|
else
|
|
|
|
weight = 1.0;
|
|
|
|
|
|
|
|
if(weight != 1.0)
|
|
|
|
{
|
|
|
|
weighted_vector_sumf(interpolated_lspf, curr_lspf, q->prev_lspf,
|
|
|
|
weight, 1.0 - weight, 10);
|
|
|
|
qcelp_lspf2lpc(interpolated_lspf, lpc);
|
|
|
|
}else if(q->bitrate >= RATE_QUARTER || (q->bitrate == I_F_Q && !subframe_num))
|
|
|
|
qcelp_lspf2lpc(curr_lspf, lpc);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int buf_size2bitrate(const int buf_size)
|
|
|
|
{
|
|
|
|
switch(buf_size)
|
|
|
|
{
|
|
|
|
case 35:
|
|
|
|
return RATE_FULL;
|
|
|
|
case 17:
|
|
|
|
return RATE_HALF;
|
|
|
|
case 8:
|
|
|
|
return RATE_QUARTER;
|
|
|
|
case 4:
|
|
|
|
return RATE_OCTAVE;
|
|
|
|
case 1:
|
|
|
|
return SILENCE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void warn_insufficient_frame_quality(AVCodecContext *avctx,
|
|
|
|
const char *message)
|
|
|
|
{
|
|
|
|
av_log(avctx, AV_LOG_WARNING, "Frame #%d, IFQ: %s\n", avctx->frame_number,
|
|
|
|
message);
|
|
|
|
}
|
|
|
|
|
|
|
|
AVCodec qcelp_decoder =
|
|
|
|
{
|
|
|
|
.name = "qcelp",
|
|
|
|
.type = CODEC_TYPE_AUDIO,
|
|
|
|
.id = CODEC_ID_QCELP,
|
|
|
|
.init = qcelp_decode_init,
|
|
|
|
.decode = qcelp_decode_frame,
|
|
|
|
.priv_data_size = sizeof(QCELPContext),
|
|
|
|
.long_name = NULL_IF_CONFIG_SMALL("QCELP / PureVoice"),
|
|
|
|
};
|