You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

574 lines
13 KiB

/*
* default memory allocator for libavutil
* Copyright (c) 2002 Fabrice Bellard
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* default memory allocator for libavutil
*/
#define _XOPEN_SOURCE 600
#include "config.h"
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdatomic.h>
#include <string.h>
#if HAVE_MALLOC_H
#include <malloc.h>
#endif
#include "avutil.h"
#include "common.h"
#include "dynarray.h"
#include "intreadwrite.h"
#include "mem.h"
#ifdef MALLOC_PREFIX
#define malloc AV_JOIN(MALLOC_PREFIX, malloc)
#define memalign AV_JOIN(MALLOC_PREFIX, memalign)
#define posix_memalign AV_JOIN(MALLOC_PREFIX, posix_memalign)
#define realloc AV_JOIN(MALLOC_PREFIX, realloc)
#define free AV_JOIN(MALLOC_PREFIX, free)
void *malloc(size_t size);
void *memalign(size_t align, size_t size);
int posix_memalign(void **ptr, size_t align, size_t size);
void *realloc(void *ptr, size_t size);
void free(void *ptr);
#endif /* MALLOC_PREFIX */
#include "mem_internal.h"
#define ALIGN (HAVE_AVX512 ? 64 : (HAVE_AVX ? 32 : 16))
/* NOTE: if you want to override these functions with your own
* implementations (not recommended) you have to link libav* as
* dynamic libraries and remove -Wl,-Bsymbolic from the linker flags.
* Note that this will cost performance. */
static atomic_size_t max_alloc_size = ATOMIC_VAR_INIT(INT_MAX);
void av_max_alloc(size_t max){
atomic_store_explicit(&max_alloc_size, max, memory_order_relaxed);
}
static int size_mult(size_t a, size_t b, size_t *r)
{
size_t t;
#if (!defined(__INTEL_COMPILER) && AV_GCC_VERSION_AT_LEAST(5,1)) || AV_HAS_BUILTIN(__builtin_mul_overflow)
if (__builtin_mul_overflow(a, b, &t))
return AVERROR(EINVAL);
#else
t = a * b;
/* Hack inspired from glibc: don't try the division if nelem and elsize
* are both less than sqrt(SIZE_MAX). */
if ((a | b) >= ((size_t)1 << (sizeof(size_t) * 4)) && a && t / a != b)
return AVERROR(EINVAL);
#endif
*r = t;
return 0;
}
void *av_malloc(size_t size)
{
void *ptr = NULL;
if (size > atomic_load_explicit(&max_alloc_size, memory_order_relaxed))
return NULL;
#if HAVE_POSIX_MEMALIGN
if (size) //OS X on SDK 10.6 has a broken posix_memalign implementation
if (posix_memalign(&ptr, ALIGN, size))
ptr = NULL;
#elif HAVE_ALIGNED_MALLOC
ptr = _aligned_malloc(size, ALIGN);
#elif HAVE_MEMALIGN
#ifndef __DJGPP__
ptr = memalign(ALIGN, size);
#else
ptr = memalign(size, ALIGN);
#endif
/* Why 64?
* Indeed, we should align it:
* on 4 for 386
* on 16 for 486
* on 32 for 586, PPro - K6-III
* on 64 for K7 (maybe for P3 too).
* Because L1 and L2 caches are aligned on those values.
* But I don't want to code such logic here!
*/
/* Why 32?
* For AVX ASM. SSE / NEON needs only 16.
* Why not larger? Because I did not see a difference in benchmarks ...
*/
/* benchmarks with P3
* memalign(64) + 1 3071, 3051, 3032
* memalign(64) + 2 3051, 3032, 3041
* memalign(64) + 4 2911, 2896, 2915
* memalign(64) + 8 2545, 2554, 2550
* memalign(64) + 16 2543, 2572, 2563
* memalign(64) + 32 2546, 2545, 2571
* memalign(64) + 64 2570, 2533, 2558
*
* BTW, malloc seems to do 8-byte alignment by default here.
*/
#else
ptr = malloc(size);
#endif
if(!ptr && !size) {
size = 1;
ptr= av_malloc(1);
}
#if CONFIG_MEMORY_POISONING
if (ptr)
memset(ptr, FF_MEMORY_POISON, size);
#endif
return ptr;
}
void *av_realloc(void *ptr, size_t size)
{
void *ret;
if (size > atomic_load_explicit(&max_alloc_size, memory_order_relaxed))
return NULL;
#if HAVE_ALIGNED_MALLOC
ret = _aligned_realloc(ptr, size + !size, ALIGN);
#else
ret = realloc(ptr, size + !size);
#endif
#if CONFIG_MEMORY_POISONING
if (ret && !ptr)
memset(ret, FF_MEMORY_POISON, size);
#endif
return ret;
}
void *av_realloc_f(void *ptr, size_t nelem, size_t elsize)
{
size_t size;
void *r;
if (size_mult(elsize, nelem, &size)) {
av_free(ptr);
return NULL;
}
r = av_realloc(ptr, size);
if (!r)
av_free(ptr);
return r;
}
int av_reallocp(void *ptr, size_t size)
{
void *val;
if (!size) {
av_freep(ptr);
return 0;
}
memcpy(&val, ptr, sizeof(val));
val = av_realloc(val, size);
if (!val) {
av_freep(ptr);
return AVERROR(ENOMEM);
}
memcpy(ptr, &val, sizeof(val));
return 0;
}
void *av_malloc_array(size_t nmemb, size_t size)
{
size_t result;
if (size_mult(nmemb, size, &result) < 0)
return NULL;
return av_malloc(result);
}
#if FF_API_AV_MALLOCZ_ARRAY
void *av_mallocz_array(size_t nmemb, size_t size)
{
size_t result;
if (size_mult(nmemb, size, &result) < 0)
return NULL;
return av_mallocz(result);
}
#endif
void *av_realloc_array(void *ptr, size_t nmemb, size_t size)
{
size_t result;
if (size_mult(nmemb, size, &result) < 0)
return NULL;
return av_realloc(ptr, result);
}
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
{
void *val;
memcpy(&val, ptr, sizeof(val));
val = av_realloc_f(val, nmemb, size);
memcpy(ptr, &val, sizeof(val));
if (!val && nmemb && size)
return AVERROR(ENOMEM);
return 0;
}
void av_free(void *ptr)
{
#if HAVE_ALIGNED_MALLOC
_aligned_free(ptr);
#else
free(ptr);
#endif
}
void av_freep(void *arg)
{
void *val;
memcpy(&val, arg, sizeof(val));
memcpy(arg, &(void *){ NULL }, sizeof(val));
av_free(val);
}
void *av_mallocz(size_t size)
{
void *ptr = av_malloc(size);
if (ptr)
memset(ptr, 0, size);
return ptr;
}
void *av_calloc(size_t nmemb, size_t size)
{
size_t result;
if (size_mult(nmemb, size, &result) < 0)
return NULL;
return av_mallocz(result);
}
char *av_strdup(const char *s)
{
char *ptr = NULL;
if (s) {
size_t len = strlen(s) + 1;
ptr = av_realloc(NULL, len);
if (ptr)
memcpy(ptr, s, len);
}
return ptr;
}
char *av_strndup(const char *s, size_t len)
{
char *ret = NULL, *end;
if (!s)
return NULL;
end = memchr(s, 0, len);
if (end)
len = end - s;
ret = av_realloc(NULL, len + 1);
if (!ret)
return NULL;
memcpy(ret, s, len);
ret[len] = 0;
return ret;
}
void *av_memdup(const void *p, size_t size)
{
void *ptr = NULL;
if (p) {
ptr = av_malloc(size);
if (ptr)
memcpy(ptr, p, size);
}
return ptr;
}
int av_dynarray_add_nofree(void *tab_ptr, int *nb_ptr, void *elem)
{
void **tab;
memcpy(&tab, tab_ptr, sizeof(tab));
FF_DYNARRAY_ADD(INT_MAX, sizeof(*tab), tab, *nb_ptr, {
tab[*nb_ptr] = elem;
memcpy(tab_ptr, &tab, sizeof(tab));
}, {
return AVERROR(ENOMEM);
});
return 0;
}
void av_dynarray_add(void *tab_ptr, int *nb_ptr, void *elem)
{
void **tab;
memcpy(&tab, tab_ptr, sizeof(tab));
FF_DYNARRAY_ADD(INT_MAX, sizeof(*tab), tab, *nb_ptr, {
tab[*nb_ptr] = elem;
memcpy(tab_ptr, &tab, sizeof(tab));
}, {
*nb_ptr = 0;
av_freep(tab_ptr);
});
}
void *av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size,
const uint8_t *elem_data)
{
uint8_t *tab_elem_data = NULL;
FF_DYNARRAY_ADD(INT_MAX, elem_size, *tab_ptr, *nb_ptr, {
tab_elem_data = (uint8_t *)*tab_ptr + (*nb_ptr) * elem_size;
if (elem_data)
memcpy(tab_elem_data, elem_data, elem_size);
else if (CONFIG_MEMORY_POISONING)
memset(tab_elem_data, FF_MEMORY_POISON, elem_size);
}, {
av_freep(tab_ptr);
*nb_ptr = 0;
});
return tab_elem_data;
}
static void fill16(uint8_t *dst, int len)
{
uint32_t v = AV_RN16(dst - 2);
v |= v << 16;
while (len >= 4) {
AV_WN32(dst, v);
dst += 4;
len -= 4;
}
while (len--) {
*dst = dst[-2];
dst++;
}
}
static void fill24(uint8_t *dst, int len)
{
#if HAVE_BIGENDIAN
uint32_t v = AV_RB24(dst - 3);
uint32_t a = v << 8 | v >> 16;
uint32_t b = v << 16 | v >> 8;
uint32_t c = v << 24 | v;
#else
uint32_t v = AV_RL24(dst - 3);
uint32_t a = v | v << 24;
uint32_t b = v >> 8 | v << 16;
uint32_t c = v >> 16 | v << 8;
#endif
while (len >= 12) {
AV_WN32(dst, a);
AV_WN32(dst + 4, b);
AV_WN32(dst + 8, c);
dst += 12;
len -= 12;
}
if (len >= 4) {
AV_WN32(dst, a);
dst += 4;
len -= 4;
}
if (len >= 4) {
AV_WN32(dst, b);
dst += 4;
len -= 4;
}
while (len--) {
*dst = dst[-3];
dst++;
}
}
static void fill32(uint8_t *dst, int len)
{
uint32_t v = AV_RN32(dst - 4);
#if HAVE_FAST_64BIT
uint64_t v2= v + ((uint64_t)v<<32);
while (len >= 32) {
AV_WN64(dst , v2);
AV_WN64(dst+ 8, v2);
AV_WN64(dst+16, v2);
AV_WN64(dst+24, v2);
dst += 32;
len -= 32;
}
#endif
while (len >= 4) {
AV_WN32(dst, v);
dst += 4;
len -= 4;
}
while (len--) {
*dst = dst[-4];
dst++;
}
}
void av_memcpy_backptr(uint8_t *dst, int back, int cnt)
{
const uint8_t *src = &dst[-back];
if (!back)
return;
if (back == 1) {
memset(dst, *src, cnt);
} else if (back == 2) {
fill16(dst, cnt);
} else if (back == 3) {
fill24(dst, cnt);
} else if (back == 4) {
fill32(dst, cnt);
} else {
if (cnt >= 16) {
int blocklen = back;
while (cnt > blocklen) {
memcpy(dst, src, blocklen);
dst += blocklen;
cnt -= blocklen;
blocklen <<= 1;
}
memcpy(dst, src, cnt);
return;
}
if (cnt >= 8) {
AV_COPY32U(dst, src);
AV_COPY32U(dst + 4, src + 4);
src += 8;
dst += 8;
cnt -= 8;
}
if (cnt >= 4) {
AV_COPY32U(dst, src);
src += 4;
dst += 4;
cnt -= 4;
}
if (cnt >= 2) {
AV_COPY16U(dst, src);
src += 2;
dst += 2;
cnt -= 2;
}
if (cnt)
*dst = *src;
}
}
void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size)
{
size_t max_size;
if (min_size <= *size)
return ptr;
max_size = atomic_load_explicit(&max_alloc_size, memory_order_relaxed);
if (min_size > max_size) {
*size = 0;
return NULL;
}
min_size = FFMIN(max_size, FFMAX(min_size + min_size / 16 + 32, min_size));
ptr = av_realloc(ptr, min_size);
/* we could set this to the unmodified min_size but this is safer
* if the user lost the ptr and uses NULL now
*/
if (!ptr)
min_size = 0;
*size = min_size;
return ptr;
}
static inline void fast_malloc(void *ptr, unsigned int *size, size_t min_size, int zero_realloc)
{
size_t max_size;
void *val;
memcpy(&val, ptr, sizeof(val));
if (min_size <= *size) {
av_assert0(val || !min_size);
return;
}
max_size = atomic_load_explicit(&max_alloc_size, memory_order_relaxed);
if (min_size > max_size) {
av_freep(ptr);
*size = 0;
return;
}
min_size = FFMIN(max_size, FFMAX(min_size + min_size / 16 + 32, min_size));
av_freep(ptr);
val = zero_realloc ? av_mallocz(min_size) : av_malloc(min_size);
memcpy(ptr, &val, sizeof(val));
if (!val)
min_size = 0;
*size = min_size;
return;
}
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
{
fast_malloc(ptr, size, min_size, 0);
}
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
{
fast_malloc(ptr, size, min_size, 1);
}
int av_size_mult(size_t a, size_t b, size_t *r)
{
return size_mult(a, b, r);
}