|
|
|
/*
|
|
|
|
* xWMA demuxer
|
|
|
|
* Copyright (c) 2011 Max Horn
|
|
|
|
*
|
|
|
|
* This file is part of FFmpeg.
|
|
|
|
*
|
|
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <inttypes.h>
|
|
|
|
#include <stdint.h>
|
|
|
|
|
|
|
|
#include "avformat.h"
|
|
|
|
#include "internal.h"
|
|
|
|
#include "riff.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Demuxer for xWMA, a Microsoft audio container used by XAudio 2.
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef struct XWMAContext {
|
|
|
|
int64_t data_end;
|
|
|
|
} XWMAContext;
|
|
|
|
|
|
|
|
static int xwma_probe(AVProbeData *p)
|
|
|
|
{
|
|
|
|
if (!memcmp(p->buf, "RIFF", 4) && !memcmp(p->buf + 8, "XWMA", 4))
|
|
|
|
return AVPROBE_SCORE_MAX;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xwma_read_header(AVFormatContext *s)
|
|
|
|
{
|
|
|
|
int64_t size;
|
|
|
|
int ret = 0;
|
|
|
|
uint32_t dpds_table_size = 0;
|
|
|
|
uint32_t *dpds_table = NULL;
|
|
|
|
unsigned int tag;
|
|
|
|
AVIOContext *pb = s->pb;
|
|
|
|
AVStream *st;
|
|
|
|
XWMAContext *xwma = s->priv_data;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* The following code is mostly copied from wav.c, with some
|
|
|
|
* minor alterations.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* check RIFF header */
|
|
|
|
tag = avio_rl32(pb);
|
|
|
|
if (tag != MKTAG('R', 'I', 'F', 'F'))
|
|
|
|
return -1;
|
|
|
|
avio_rl32(pb); /* file size */
|
|
|
|
tag = avio_rl32(pb);
|
|
|
|
if (tag != MKTAG('X', 'W', 'M', 'A'))
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
/* parse fmt header */
|
|
|
|
tag = avio_rl32(pb);
|
|
|
|
if (tag != MKTAG('f', 'm', 't', ' '))
|
|
|
|
return -1;
|
|
|
|
size = avio_rl32(pb);
|
|
|
|
st = avformat_new_stream(s, NULL);
|
|
|
|
if (!st)
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
ret = ff_get_wav_header(s, pb, st->codecpar, size, 0);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
st->need_parsing = AVSTREAM_PARSE_NONE;
|
|
|
|
|
|
|
|
/* All xWMA files I have seen contained WMAv2 data. If there are files
|
|
|
|
* using WMA Pro or some other codec, then we need to figure out the right
|
|
|
|
* extradata for that. Thus, ask the user for feedback, but try to go on
|
|
|
|
* anyway.
|
|
|
|
*/
|
|
|
|
if (st->codecpar->codec_id != AV_CODEC_ID_WMAV2 &&
|
|
|
|
st->codecpar->codec_id != AV_CODEC_ID_WMAPRO) {
|
|
|
|
avpriv_request_sample(s, "Unexpected codec (tag %s; id %d)",
|
|
|
|
av_fourcc2str(st->codecpar->codec_tag),
|
|
|
|
st->codecpar->codec_id);
|
|
|
|
} else {
|
|
|
|
/* In all xWMA files I have seen, there is no extradata. But the WMA
|
|
|
|
* codecs require extradata, so we provide our own fake extradata.
|
|
|
|
*
|
|
|
|
* First, check that there really was no extradata in the header. If
|
|
|
|
* there was, then try to use it, after asking the user to provide a
|
|
|
|
* sample of this unusual file.
|
|
|
|
*/
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
if (st->codecpar->extradata_size != 0) {
|
|
|
|
/* Surprise, surprise: We *did* get some extradata. No idea
|
|
|
|
* if it will work, but just go on and try it, after asking
|
|
|
|
* the user for a sample.
|
|
|
|
*/
|
|
|
|
avpriv_request_sample(s, "Unexpected extradata (%d bytes)",
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
st->codecpar->extradata_size);
|
|
|
|
} else if (st->codecpar->codec_id == AV_CODEC_ID_WMAPRO) {
|
|
|
|
if (ff_alloc_extradata(st->codecpar, 18))
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
memset(st->codecpar->extradata, 0, st->codecpar->extradata_size);
|
|
|
|
st->codecpar->extradata[ 0] = st->codecpar->bits_per_coded_sample;
|
|
|
|
st->codecpar->extradata[14] = 224;
|
|
|
|
} else {
|
|
|
|
if (ff_alloc_extradata(st->codecpar, 6))
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
|
|
|
|
memset(st->codecpar->extradata, 0, st->codecpar->extradata_size);
|
|
|
|
/* setup extradata with our experimentally obtained value */
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
st->codecpar->extradata[4] = 31;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
if (!st->codecpar->channels) {
|
|
|
|
av_log(s, AV_LOG_WARNING, "Invalid channel count: %d\n",
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
st->codecpar->channels);
|
|
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
}
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
if (!st->codecpar->bits_per_coded_sample) {
|
|
|
|
av_log(s, AV_LOG_WARNING, "Invalid bits_per_coded_sample: %d\n",
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
st->codecpar->bits_per_coded_sample);
|
|
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* set the sample rate */
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
avpriv_set_pts_info(st, 64, 1, st->codecpar->sample_rate);
|
|
|
|
|
|
|
|
/* parse the remaining RIFF chunks */
|
|
|
|
for (;;) {
|
|
|
|
if (pb->eof_reached) {
|
|
|
|
ret = AVERROR_EOF;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
/* read next chunk tag */
|
|
|
|
tag = avio_rl32(pb);
|
|
|
|
size = avio_rl32(pb);
|
|
|
|
if (tag == MKTAG('d', 'a', 't', 'a')) {
|
|
|
|
/* We assume that the data chunk comes last. */
|
|
|
|
break;
|
|
|
|
} else if (tag == MKTAG('d','p','d','s')) {
|
|
|
|
/* Quoting the MSDN xWMA docs on the dpds chunk: "Contains the
|
|
|
|
* decoded packet cumulative data size array, each element is the
|
|
|
|
* number of bytes accumulated after the corresponding xWMA packet
|
|
|
|
* is decoded in order."
|
|
|
|
*
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
* Each packet has size equal to st->codecpar->block_align, which in
|
|
|
|
* all cases I saw so far was always 2230. Thus, we can use the
|
|
|
|
* dpds data to compute a seeking index.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Error out if there is more than one dpds chunk. */
|
|
|
|
if (dpds_table) {
|
|
|
|
av_log(s, AV_LOG_ERROR, "two dpds chunks present\n");
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute the number of entries in the dpds chunk. */
|
|
|
|
if (size & 3) { /* Size should be divisible by four */
|
|
|
|
av_log(s, AV_LOG_WARNING,
|
|
|
|
"dpds chunk size %"PRId64" not divisible by 4\n", size);
|
|
|
|
}
|
|
|
|
dpds_table_size = size / 4;
|
|
|
|
if (dpds_table_size == 0 || dpds_table_size >= INT_MAX / 4) {
|
|
|
|
av_log(s, AV_LOG_ERROR,
|
|
|
|
"dpds chunk size %"PRId64" invalid\n", size);
|
|
|
|
return AVERROR_INVALIDDATA;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate some temporary storage to keep the dpds data around.
|
|
|
|
* for processing later on.
|
|
|
|
*/
|
|
|
|
dpds_table = av_malloc_array(dpds_table_size, sizeof(uint32_t));
|
|
|
|
if (!dpds_table) {
|
|
|
|
return AVERROR(ENOMEM);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < dpds_table_size; ++i) {
|
|
|
|
dpds_table[i] = avio_rl32(pb);
|
|
|
|
size -= 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
avio_skip(pb, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Determine overall data length */
|
|
|
|
if (size < 0) {
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
if (!size) {
|
|
|
|
xwma->data_end = INT64_MAX;
|
|
|
|
} else
|
|
|
|
xwma->data_end = avio_tell(pb) + size;
|
|
|
|
|
|
|
|
|
|
|
|
if (dpds_table && dpds_table_size) {
|
|
|
|
int64_t cur_pos;
|
|
|
|
const uint32_t bytes_per_sample
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
= (st->codecpar->channels * st->codecpar->bits_per_coded_sample) >> 3;
|
|
|
|
|
|
|
|
/* Estimate the duration from the total number of output bytes. */
|
|
|
|
const uint64_t total_decoded_bytes = dpds_table[dpds_table_size - 1];
|
|
|
|
|
|
|
|
if (!bytes_per_sample) {
|
|
|
|
av_log(s, AV_LOG_ERROR,
|
|
|
|
"Invalid bits_per_coded_sample %d for %d channels\n",
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
st->codecpar->bits_per_coded_sample, st->codecpar->channels);
|
|
|
|
ret = AVERROR_INVALIDDATA;
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
st->duration = total_decoded_bytes / bytes_per_sample;
|
|
|
|
|
|
|
|
/* Use the dpds data to build a seek table. We can only do this after
|
|
|
|
* we know the offset to the data chunk, as we need that to determine
|
|
|
|
* the actual offset to each input block.
|
|
|
|
* Note: If we allowed ourselves to assume that the data chunk always
|
|
|
|
* follows immediately after the dpds block, we could of course guess
|
|
|
|
* the data block's start offset already while reading the dpds chunk.
|
|
|
|
* I decided against that, just in case other chunks ever are
|
|
|
|
* discovered.
|
|
|
|
*/
|
|
|
|
cur_pos = avio_tell(pb);
|
|
|
|
for (i = 0; i < dpds_table_size; ++i) {
|
|
|
|
/* From the number of output bytes that would accumulate in the
|
|
|
|
* output buffer after decoding the first (i+1) packets, we compute
|
|
|
|
* an offset / timestamp pair.
|
|
|
|
*/
|
|
|
|
av_add_index_entry(st,
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
cur_pos + (i+1) * st->codecpar->block_align, /* pos */
|
|
|
|
dpds_table[i] / bytes_per_sample, /* timestamp */
|
|
|
|
st->codecpar->block_align, /* size */
|
|
|
|
0, /* duration */
|
|
|
|
AVINDEX_KEYFRAME);
|
|
|
|
}
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
} else if (st->codecpar->bit_rate) {
|
|
|
|
/* No dpds chunk was present (or only an empty one), so estimate
|
|
|
|
* the total duration using the average bits per sample and the
|
|
|
|
* total data length.
|
|
|
|
*/
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
st->duration = (size<<3) * st->codecpar->sample_rate / st->codecpar->bit_rate;
|
|
|
|
}
|
|
|
|
|
|
|
|
fail:
|
|
|
|
av_free(dpds_table);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int xwma_read_packet(AVFormatContext *s, AVPacket *pkt)
|
|
|
|
{
|
|
|
|
int ret, size;
|
|
|
|
int64_t left;
|
|
|
|
AVStream *st;
|
|
|
|
XWMAContext *xwma = s->priv_data;
|
|
|
|
|
|
|
|
st = s->streams[0];
|
|
|
|
|
|
|
|
left = xwma->data_end - avio_tell(s->pb);
|
|
|
|
if (left <= 0) {
|
|
|
|
return AVERROR_EOF;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* read a single block; the default block size is 2230. */
|
lavf: replace AVStream.codec with AVStream.codecpar
Currently, AVStream contains an embedded AVCodecContext instance, which
is used by demuxers to export stream parameters to the caller and by
muxers to receive stream parameters from the caller. It is also used
internally as the codec context that is passed to parsers.
In addition, it is also widely used by the callers as the decoding (when
demuxer) or encoding (when muxing) context, though this has been
officially discouraged since Libav 11.
There are multiple important problems with this approach:
- the fields in AVCodecContext are in general one of
* stream parameters
* codec options
* codec state
However, it's not clear which ones are which. It is consequently
unclear which fields are a demuxer allowed to set or a muxer allowed to
read. This leads to erratic behaviour depending on whether decoding or
encoding is being performed or not (and whether it uses the AVStream
embedded codec context).
- various synchronization issues arising from the fact that the same
context is used by several different APIs (muxers/demuxers,
parsers, bitstream filters and encoders/decoders) simultaneously, with
there being no clear rules for who can modify what and the different
processes being typically delayed with respect to each other.
- avformat_find_stream_info() making it necessary to support opening
and closing a single codec context multiple times, thus
complicating the semantics of freeing various allocated objects in the
codec context.
Those problems are resolved by replacing the AVStream embedded codec
context with a newly added AVCodecParameters instance, which stores only
the stream parameters exported by the demuxers or read by the muxers.
11 years ago
|
|
|
size = (st->codecpar->block_align > 1) ? st->codecpar->block_align : 2230;
|
|
|
|
size = FFMIN(size, left);
|
|
|
|
|
|
|
|
ret = av_get_packet(s->pb, pkt, size);
|
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
pkt->stream_index = 0;
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
AVInputFormat ff_xwma_demuxer = {
|
|
|
|
.name = "xwma",
|
|
|
|
.long_name = NULL_IF_CONFIG_SMALL("Microsoft xWMA"),
|
|
|
|
.priv_data_size = sizeof(XWMAContext),
|
|
|
|
.read_probe = xwma_probe,
|
|
|
|
.read_header = xwma_read_header,
|
|
|
|
.read_packet = xwma_read_packet,
|
|
|
|
};
|